
Characteristics of Java (Optional)

Y. Daniel Liang
Supplement for Introduction to Java Programming

Java has become enormously popular. Java’s rapid rise and
wide acceptance can be traced to its design and programming
features, particularly its promise that you can write a
program once and run it anywhere. As stated in the Java
language white paper by Sun, Java is simple, object-
oriented, distributed, interpreted, robust, secure,
architecture-neutral, portable, high-performance,
multithreaded, and dynamic. Let’s analyze these often-used
buzzwords.

1 Java Is Simple

No language is simple, but Java is a bit easier than the
popular object-oriented programming language C++, which was
the dominant software-development language before Java.
Java is partially modeled on C++, but greatly simplified
and improved. For instance, pointers and multiple
inheritance often make programming complicated. Java
replaces the multiple inheritance in C++ with a simple
language construct called an interface, and eliminates
pointers.

Java uses automatic memory allocation and garbage
collection, whereas C++ requires the programmer to allocate
memory and collect garbage. Also, the number of language
constructs is small for such a powerful language. The clean
syntax makes Java programs easy to write and read. Some
people refer to Java as "C++--" because it is like C++ but
with more functionality and fewer negative aspects.

2 Java Is Object-Oriented

Java is inherently object-oriented. Although many object-
oriented languages began strictly as procedural languages,
Java was designed from the start to be object-oriented.
Object-oriented programming (OOP) is a popular programming
approach that is replacing traditional procedural
programming techniques.

Software systems developed using procedural programming
languages are based on the paradigm of procedures. Object-
oriented programming models the real world in terms of

objects. Everything in the world can be modeled as an
object. A circle is an object, a person is an object, and a
Window icon is an object. Even a loan can be perceived as
an object. A Java program is object-oriented because
programming in Java is centered on creating objects,
manipulating objects, and making objects work together.

Part I, “Fundamentals of Programming,” introduces primitive
data types and operations, control statements, methods, and
arrays. These are the fundamentals for all programming
languages. You will learn object-oriented programming in
Part II, “Object-Oriented Programming.”

One of the central issues in software development is how to reuse
code. Object-oriented programming provides great flexibility,
modularity, clarity, and reusability through encapsulation,
inheritance, and polymorphism—all of which you will learn about
in this book. For years, object-oriented technology was perceived
as elitist, requiring a substantial investment in training and
infrastructure. Java has helped object-oriented technology enter
the mainstream of computing. Its simple, clean syntax makes
programs easy to write and read. Java programs are quite
expressive in terms of designing and developing applications.

3 Java Is Distributed

Distributed computing involves several computers working
together on a network. Java is designed to make distributed
computing easy. Since networking capability is inherently
integrated into Java, writing network programs is like
sending and receiving data to and from a file.

4 Java Is Interpreted

You need an interpreter to run Java programs. The programs
are compiled into the Java Virtual Machine code called
bytecode. The bytecode is machine-independent and can run
on any machine that has a Java interpreter, which is part
of the Java Virtual Machine (JVM).

Most compilers, including C++ compilers, translate programs
in a high-level language to machine code. The code can only
run on the native machine. If you run the program on other
machines, it has to be recompiled on the native machine.
For instance, if you compile a C++ program in Windows, the
executable code generated by the compiler can only run on
the Windows platform. With Java, you compile the source
code once, and the bytecode generated by a Java compiler

can run on any platform with a Java interpreter. The Java
interpreter translates the bytecode into the machine
language of the target machine.

5 Java Is Robust

Robust means reliable. No programming language can ensure
complete reliability. Java puts a lot of emphasis on early
checking for possible errors, because Java compilers can
detect many problems that would first show up at execution
time in other languages. Java has eliminated certain types
of error-prone programming constructs found in other
languages. It does not support pointers, for example,
thereby eliminating the possibility of overwriting memory
and corrupting data.

Java has a runtime exception-handling feature to provide
programming support for robustness. Java forces the
programmer to write the code to deal with exceptions. Java
can catch and respond to an exceptional situation so that
the program can continue its normal execution and terminate
gracefully when a runtime error occurs.

6 Java Is Secure

As an Internet programming language, Java is used in a
networked and distributed environment. If you download a
Java applet (a special kind of program) and run it on your
computer, it will not damage your system because Java
implements several security mechanisms to protect your
system against harm caused by stray programs. The security
is based on the premise that nothing should be trusted.

7 Java Is Architecture-Neutral

Java is interpreted. This feature enables Java to be
architecture-neutral, or to use an alternative term,
platform-independent. With a Java Virtual Machine (JVM), you
can write one program that will run on any platform, as
shown in Figure 1.5.

Java’s initial success stemmed from its Web-programming
capability. You can run Java applets from a Web browser,
but Java is for more than just writing Web applets. You can
also run standalone Java applications directly from
operating systems, using a Java interpreter. Today,
software vendors usually develop multiple versions of the
same product to run on different platforms (Windows, OS/2,

Macintosh, and various UNIX, IBM AS/400, and IBM
mainframes). Using Java, developers need to write only one
version that can run on every platform.

8 Java Is Portable

Because Java is architecture neutral, Java programs are
portable. They can be run on any platform without being
recompiled. Moreover, there are no platform-specific
features in the Java language. In some languages, such as
Ada, the largest integer varies on different platforms. But
in Java, the range of the integer is the same on every
platform, as is the behavior of arithmetic. The fixed range
of the numbers makes the program portable.

The Java environment is portable to new hardware and
operating systems. In fact, the Java compiler itself is
written in Java.

9 Java's Performance

Java’s performance is sometimes criticized. The execution
of the bytecode is never as fast as it would be with a
compiled language, such as C++. Because Java is
interpreted, the bytecode is not directly executed by the
system, but is run through the interpreter. However, its
speed is more than adequate for most interactive
applications, where the CPU is often idle, waiting for
input or for data from other sources.

CPU speed has increased dramatically in the past few years,
and this trend will continue. There are many ways to
improve performance. Users of the earlier Sun Java Virtual
Machine certainly noticed that Java was slow. However, the
new JVM is significantly faster. The new JVM uses the
technology known as just-in-time compilation. It compiles
bytecode into native machine code, stores the native code,
and reinvokes the native code when its bytecode is
executed. Sun recently developed the Java HotSpot
Performance Engine, which includes a compiler for
optimizing the frequently used code. The HotSpot
Performance Engine can be plugged into a JVM to
dramatically boost its performance.

10 Java Is Multithreaded

Multithreading is a program’s capability to perform several

tasks simultaneously. For example, downloading a video file
while playing the video would be considered multithreading.
Multithread programming is smoothly integrated in Java,
whereas in other languages you have to call procedures
specific to the operating system to enable multithreading.

Multithreading is particularly useful in graphical user
interface (GUI) and network programming. In GUI
programming, there are many things going on at the same
time. A user can listen to an audio recording while surfing
a Web page. In network programming, a server can serve
multiple clients at the same time. Multithreading is a
necessity in multimedia and network programming.

11 Java Is Dynamic

Java was designed to adapt to an evolving environment. New
class can be loaded on the fly without recompilation. There
is no need for developers to create, and for users to
install, major new software versions. New features can be
incorporated transparently as needed.

