

8

Supplement IV.H: Enumerated Types
For Introduction to C++ Programming

By Y. Daniel Liang

You have used numeric type, char type, and bool type to
declare variables. C++ enables you to declare your own type,
known as enumerated type, using the enum keyword. For
example,

enum Day {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY};

declares an enumerated type named Day with possible values
MONDAY, TUESDAY, WEDNESDAY, THURSDAY, and FRIDAY in this
order.

An enumerated type defines a list of enumerated values. Each
value is an identifier, not a string. The identifiers are
known to the program once they are declared in the type.

By convention, an enumerated type is named with the first
letter of each word capitalized and a value of an enumerated
type is named like a constant with all uppercase letters.

Once a type is defined, you can declare a variable of that
type:

Day day;

The variable day can hold one of the values defined in the
enumerated type. For example, the following statement
assigns enumerated value MONDAY to variable day:

day = MONDAY;

As with any other type, you can declare and initialize a
variable in one statement:

Day day = MONDAY;

Furthermore, C++ allows you to declare an enumerated type
and variable in one statement. For example,

enum Day {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY} day =
MONDAY;

CAUTION
An enumerated value can not be redeclared. For
example, the following code would cause a syntax
error.
enum Day {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY};

9

const int MONDAY = 0; // Error: MONDAY already declared.

An enumerated variable holds a value. Often your program
needs to perform a specific action depending on the value.
For example, if the value is MONDAY, play soccer; if the
value is TUESDAY, take piano lesson, and so on. You can use
an if statement or a switch statement to test the value in
the variable, as shown in (a) and (b)

 if (day == MONDAY)
{
 // process Monday
}
else if (day == TUESDAY)
{
 // process Tuesday
}
else
 ...

(a)

Equivalent

switch (day)
{
 case MONDAY:
 // process Monday
 break;
 case TUESDAY:
 // process Tuesday
 break;
 ...
}

(b)

Enumerated values are stored as integers in memory. By
default, the values correspond to 0, 1, 2, ..., in the order
of their appearance in the list. So, MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, and FRIDAY correspond to the integer
values 0, 1, 2, 3, and 4. You can explicitly assign an
enumerated value with any integer value. For example,

enum Color {RED = 20, GREEN = 30, BLUE = 40};

RED has an integer value 20, GREEN 30, and BLUE 40.

If you assign integer values for some values in the
enumerated type declaration, the other values will receive
default values. For example,

enum City {PARIS, LONDON, DALLAS = 30, HOUSTON};

PARIS will be assigned 0, LONDON 1, DALLAS 30, and HOUSTON
31.

You can assign an enumerated value to an integer variable.
For example,

int i = PARIS;

This assigns 0 to i.

Enumerated values can be compared on their assigned integer
values using the six comparison operators. For example,
(PARIS < LONDON) yields true.

Listing 1 gives an example of using enumerated types.

10

Listing 1 TestEnumeratedType.cpp

#include <iostream>
using namespace std;

int main()
{
 enum Day {MONDAY = 1, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY};

 cout << "Enter a day (1 for Monday, 2 for Tuesday, etc): ";
 int dayNumber;
 cin >> dayNumber;

 switch (dayNumber) {
 case MONDAY:
 cout << "Play soccer" << endl;
 break;
 case TUESDAY:
 cout << "Piano lesson" << endl;
 break;
 case WEDNESDAY:
 cout << "Math team" << endl;
 break;
 default:
 cout << "Go home" << endl;
 }

 return 0;
}

Sample Output

Enter a day (1 for Monday, 2 for Tuesday, etc): 1
Play soccer

Sample Output

Enter a day (1 for Monday, 2 for Tuesday, etc): 4
Go home

Line 6 declares an enumerated type Day and declares a
variable named day in one statement. Line 10 reads an int
value from the keyboard. The switch statement in lines 12-24
checks whether day is MONDAY, TUESDAY, WEDNESDAY, or others
to display a message accordingly.

