

43

Supplement V.F: C-Strings

For Introduction to C++ Programming
By Y. Daniel Liang

NOTE
§7.8 gave a brief introduction on C-string from the
array’s perspectives. This supplement provides a
detailed coverage on C-string with use of pointers.

1. Introduction

A C-string is an array of characters ending in the null
terminator ('\0'), which indicates where a string terminates in
memory. Recall that a character that begins with the backslash
symbol (\) is an escape character. The symbols \ and 0 together
represent one character. This character is the first character
in the ASCII table.

You can declare a C-string variable using an array. Every string
literal is a C-string. Recall that you can assign a string
literal to an array. For example, the following statement
creates a C-string that contains characters 'D', 'a', 'l', 'l',
'a', 's', and '\0'.

char city[7] = "Dallas";

Note that the size of the array is 7 and the last character in
the array is '\0'.

There is a subtle difference between a C-string and an array of
characters. A C-string is an array of characters that ends with
a null terminator. For example, the following two statements are
different.

char city[] = "Dallas"; // C-string
char city[] = {'D', 'a', 'l', 'l', 'a', 's'}; // Not a C-string

The former is a C-string and the latter is just an array of
characters. The former has 7 characters including the last null
terminator and the latter has 6 characters.

2. Reading Strings

You can read a string from the keyboard using the cin object.
For example, see the following code:

char city[7];
cout << "Enter a city: ";

44

cin >> city; // Read to array city
cout << "You entered " << city << endl;

CAUTION:
When you read a string to array city, make sure to
leave room for the null terminator character. Since
city has a size 7, your input should not exceed 6
characters.

This approach to read a string is simple, but there is a
problem. The input ends with a whitespace character. Suppose you
want to enter New York, you have to use an alternative approach.
C++ provides the cin.getline function in the iostream header
file, which reads a string into an array. The syntax of the
function is:

cin.getline(char array[], int size, char delimitChar)

The function stops reading characters when the delimiter
character is encountered or when the size - 1 number of
characters are read. The last character in the array is reserved
for the null terminator ('\0'). If the delimiter is encountered,
it is read, but not stored in the array. The third argument
delimitChar has a default value ('\n').

The following code uses the cin.getline function to read a
string.

char city[30];
cout << "Enter a city: ";
cin.getline(city, 30, '\n'); // Read to array city
cout << "You entered " << city << endl;

Since the default value for the third argument in the
cin.getline function is '\n', line 3 can be replaced by

cin.getline(city, 30); // Read to array city

3. C-string Functions

C++ provides several useful and powerful functions for testing
and processing strings, as shown in Table 1. To use these
functions, your program needs to include the cstring header
file.

Table 1
String Functions

45

Function Description

size_t strlen(char *s)

 Returns the length of the string, i.e., the number of the

 characters before the null terminator.

char *strcpy(char *s1, const char *s2)

 Copies the string s2 to string s1. The value in s1 is returned.

char *strncpy(char *s1, const char *s2, size_t n)

 Copies at most n characters from string s2 to string s1. The

 value in s1 is returned.

char *strcat(char *s1, const char *s2)

 Appends string s2 to s1. The first character of s2 overwrites the

 null terminator in s1. The value in s1 is returned.

char *strncat(char *s1, const char *s2, size_t n)

 Appends at most n characters from string s2 to s1. The first

 character of s2 overwrites the null terminator in s1 and appends

 a null terminator to the result. The value in s1 is returned.

int strcmp(char *s1, const char *s2)

 Returns a value greater than 0, 0, or less than 0 if s1 is greater

 than, equal to, or less than s2 based on the numeric code of the

 characters.

int strncmp(char *s1, const char *s2, size_t n)

 Returns a value greater than 0, 0, or less than 0 if the n

 characters in s1 is greater than, equal to, or less than the first

 n characters in s2 based on the numeric code of the characters.

int atoi(char *s)

 Converts the string to an int value.

double atof(char *s)

 Converts the string to a double value.

long atol(char *s)

 Converts the string to a long value.

void itoa(int value, char *s, int radix)

 Converts the value to a string based on specified radix.

NOTE
size_t is a C++ type. For most compilers, it is the
same as unsigned int.

Functions strcpy and strncpy can be used to copy a source string
in the second argument to a target string in the first argument.
The target string must have already been allocated with
sufficient memory for the function to work. Function strncpy is
equivalent to strcpy except that strncpy specifies the number of
characters to be copied from the source. Listing 1 gives a
program to demonstrate these two functions.

Listing 1 CopyString.cpp

#include <iostream>

46

#include <cstring>
using namespace std;

int main()
{
 char s1[20];
 char s2[] = "Dallas, Texas"; // Let C++ figure out the size
of s2
 char s3[] = "AAAAAAAAAA"; // Let C++ figure out the size of
s3

 strcpy(s1, s2);
 strncpy(s3, s2, 6);
 s3[6] = '\0'; // Insert null terminator

 cout << "The string in s1 is " << s1 << endl;
 cout << "The string in s2 is " << s2 << endl;
 cout << "The string in s3 is " << s3 << endl;
 cout << "The length of string s3 is " << strlen(s3) <<
endl;

 return 0;
}

Sample Output

The string in s1 is Dallas, Texas
The string in s2 is Dallas, Texas
The string in s3 is Dallas
The length of string s3 is 6

Three strings s1, s2, and s3 are declared in lines 7-9. Line 11
copies s2 to s1 using the strcpy function. Line 12 copies the
first 6 characters from s2 to s1 using the strncpy function.
Note that the null terminator character is not copied in this
case. To terminate the string properly, a null terminator is
manually inserted at s3[6] (the end of the new string). What
would happen if you run the program without line 13? String s3
would become DallasAAAA.

NOTE:
Both strcpy and strncpy functions return a string
value. But they are invoked as statements in lines
11-12. Recall that a value-returning function may be
invoked as a statement if you are not interested in
the return value of the function. In this case, the
return value is simply ignored.

Functions strcat and strncat can be used to append the string in
the second argument to the string in the first argument. The
first string must have already been allocated with sufficient

47

memory for the function to work. Function strncat is equivalent
to strcat except that strncat specifies the number of characters
to be appended from the second string. Listing 2 gives a program
to demonstrate these two functions.

Listing 2 CombineString.cpp

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
 char s1[20] = "Dallas";
 char s2[20] = "Texas, USA";
 char s3[20] = "Dallas";

 strcat(strcat(s1, ", "), s2);
 strncat(strcat(s3, ", "), s2, 5);

 cout << "The string in s1 is " << s1 << endl;
 cout << "The string in s2 is " << s2 << endl;
 cout << "The string in s3 is " << s3 << endl;
 cout << "The length of string s1 is " << strlen(s1) <<
endl;
 cout << "The length of string s3 is " << strlen(s3) <<
endl;

 return 0;
}

Sample Output

The string in s1 is Dallas, Texas, USA
The string in s2 is Texas, USA
The string in s3 is Dallas, Texas
The length of string s1 is 18
The length of string s3 is 13

Three strings s1, s2, and s3 are declared in lines 7-9. Line 11
invokes strcat twice. First, strcat(s1, ", ") appends ", " to s1
and returns new s1. Second, strcat(strcat(s1, ", "), s2) appends
s2 to the new s1. So, s1 is Dallas, Texas, USA. Similarly, line
12 appends, ", " and the first five characters in s2 to s3. So,
s3 is Dallas, Texas.

Functions strcmp and strncmp can be used to compare two strings.
How do you compare two strings? You compare their corresponding
characters according to their numeric code. Most compilers use
the ASCII code for characters.

48

The function returns the value 0 if s1 is equal to s2, a value
less than 0 if s1 is less than s2, and a value greater than 0 if
s1 is greater than s2. For example, suppose s1 is "abc" and s2
is "abg", and strcmp(s1, s2) returns -4. The first two
characters (a vs. a) from s1 and s2 are compared. Because they
are equal, the second two characters (b vs. b) are compared.
Because they are also equal, the third two characters (c vs. g)
are compared. Since the character c is 4 less than g, the
comparison returns -4.

Listing 3 gives a program to demonstrate these two functions.

Listing 3 CompareString.cpp

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
 char *s1 = "abcdefg";
 char *s2 = "abcdg";
 char *s3 = "abcdg";

 cout << "strcmp(s1, s2) is " << strcmp(s1, s2) << endl;
 cout << "strcmp(s2, s1) is " << strcmp(s2, s1) << endl;
 cout << "strcmp(s2, s3) is " << strcmp(s2, s3) << endl;
 cout << "strncmp(s1, s2, 3) is " << strncmp(s1, s2, 3) <<
endl;

 return 0;
}

Sample Output

strcmp(s1, s2) is -2
strcmp(s2, s1) is 2
strcmp(s2, s3) is 0
strncmp(s1, s2, 3) is 0

Three strings s1, s2, and s3 are declared in lines 7-9. Line 11
invokes strcmp(s1, s2), which returns -2, because 'e' - 'g' is -
2. Line 12 invokes strcmp(s2, s1), which returns 2, because 'g'
- 'e' is 2. Line 13 invokes strcmp(s2, s3), which returns 0,
because the two strings are identical. Line 14 invokes
strncmp(s1, s2, 3), which returns 0, because the first three
character substrings in both s1 and s2 are identical.

NOTE:

49

With some compilers, functions strcmp and strncmp
always return 1, 0, or -1.

Functions atoi, atof, and atol convert a string to a numeric
value. Function itoa converts an integer to a string.

Listing 4 gives a program to demonstrate these functions.

Listing 4 StringConversion.cpp

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
 cout << atoi("4") + atoi("5") << endl;
 cout << atof("4.5") + atof("5.5") << endl;

 char s[10];
 itoa(42, s, 8);
 cout << s << endl;

 itoa(42, s, 10);
 cout << s << endl;

 itoa(42, s, 16);
 cout << s << endl;

 return 0;
}

Sample Output

9
10
52
42
2a

Invoking atoi("4") returns an int value 4 in line 8. Invoking
atof("4.5") returns a double value 4.5 in line 8. Invoking itoa
(42, s, 8) converts an int value 42 to a string based radix 8 in
line 11. Invoking itoa (42, s, 10) converts an int value 42 to a
string based radix 10 in line 14. Invoking itoa (42, s, 16)
converts an int value 42 to a string based radix 8 in line 18.

4 Example: Obtaining Substrings

Often it is useful to obtain a substring from a string. But
there is no such function in the <cstring> header. You can

50

develop your own function for extracting substrings. The header
of the function can be specified as:

char * substring(char *s, int start, int end)

This function returns a string which is a substring in s from
index start to index end - 1. For example, invoking

substring("Welcome to C++", 2, 6)

returns "lcom".

Listing 5 defines and implements the function in a header file.

Listing 5 Substring.h

char * substring(const char * const s, int start, int end)
{
 char * pNewString = new char[end - start + 1];

 int j = 0;
 for (int i = start; i < end; i++, j++)
 {
 pNewString[j] = s[i];
 }

 pNewString[j] = '\0'; // Set a null terminator

 return pNewString;
}

A new string with the right size end – start + 1 is created in
line 3. end – start is the number of characters extracted from
the original string to hold the substring. The extra +1 is for
the null terminator. The substring from index start to end is
copied to pNewString (lines 6-9). The null terminator is set in
line 11.

Listing 6 gives a test program for this function.

Listing 6 TestSubstring.h

#include <iostream>
#include "Substring.h"
using namespace std;

int main()
{
 char *s = "Atlanta, Georgia";
 cout << substring(s, 0, 7);

51

 return 0;
}

Sample Output
 Atlanta

CAUTION
The substring returned from this function is created
using the new operator. The user of the substring
function should delete the string after it finishes
using it to release the memory occupied by this
substring. Otherwise, the string exists as long as
the program is alive. It is better to redesign the
function to pass the result substring as a parameter
as follows:

void substring(const char* const s, int start,
 int end, char* substr)

5 Case Studies: Checking Palindromes
A string is a palindrome if it reads the same forward and
backward. The words “mom,” “dad,” and “noon,” for example, are
all palindromes.

How do you write a program to check whether a string is a
palindrome? One solution is to check whether the first character
in the string is the same as the last character. If so, check
whether the second character is the same as the second-last
character. This process continues until a mismatch is found or
all the characters in the string are checked, except for the
middle character if the string has an odd number of characters.

To implement this idea, use two variables, say low and high, to
denote the position of two characters at the beginning and the
end in a string s, as shown in Listing 7 (lines 26, 29).
Initially, low is 0 and high is strlen(s) - 1. If the two
characters at these positions match, increment low by 1 and
decrement high by 1 (lines 36-37). This process continues until
(low >= high) or a mismatch is found.

Listing 7 CheckPalindrome.cpp

#include <iostream>
#include <cstring>
using namespace std;

// Check if a string is a palindrome

52

bool isPalindrome(const char *);

int main()
{
 // Prompt the user to enter a string
 cout << "Enter a string: ";
 char s[80];
 cin.getline(s, 80);

 if (isPalindrome(s))
 cout << s << " is a palindrome" << endl;
 else
 cout << s << " is not a palindrome" << endl;

 return 0;
}

bool isPalindrome(const char * const s)
{
 // The index of the first character in the string
 int low = 0;

 // The index of the last character in the string
 int high = strlen(s) - 1;

 while (low < high)
 {
 if (s[low] != s[high])
 return false; // Not a palindrome

 low++;
 high--;
 }

 return true; // The string is a palindrome
}

Sample Output

Enter a string: abccba
abccba is a palindrome
Enter a string: abca
abca is not a palindrome

Line 12 declares an array with a size 80. Line 13 reads a string
to the array. Line 15 invokes the isPalindrome function to check
whether the string is a palindrome.

The isPalindrome function is declared in lines 23-41 to return a
Boolean value. The address of the string is passed to the

53

pointer s. The length of the string is determined by invoking
strlen(s) in line 29.

6 Improving Deck of Cards Solution

§6.2.7 presented a program that picks four cards randomly from a
deck of 52 cards. The program uses two functions displayRank and
displaySuit to display a rank and a suit. These two functions
can be replaced by defining the ranks and suits in two arrays of
strings.

const char *suits[] = {"Clubs", "Diamonds", "Hearts", "Spades"};
const char *ranks[] = {"Ace", "2", "3", "4", "5", "6", "7", "8",
 "9", "10", "Jack", "Queen", "King"};

Listing 8 improves the program in §6.2.7.

Listing 8 DeckOfCards.cpp

#include <iostream>
#include <ctime>
using namespace std;

const int NUMBER_OF_CARDS = 52;

int main()
{
 int deck[NUMBER_OF_CARDS];
 const char *suits[] = {"Clubs", "Diamonds", "Hearts", "Spades"};
 const char *ranks[] = {"Ace", "2", "3", "4", "5", "6", "7", "8",
 "9", "10", "Jack", "Queen", "King"};

 // Initialize cards
 for (int i = 0; i < NUMBER_OF_CARDS; i++)
 deck[i] = i;

 // Shuffle the cards
 srand(time(0));
 for (int i = 0; i < NUMBER_OF_CARDS; i++)
 {
 // Generate an index randomly
 int index = rand() % NUMBER_OF_CARDS;
 int temp = deck[i];
 deck[i] = deck[index];
 deck[index] = temp;
 }

 // Display the first four cards
 for (int i = 0; i < 4; i++)
 {
 cout << ranks[deck[i] % 13] << " of "

54

 << suits[deck[i] / 13] << " ";
 }

 return 0;
}

Sample Output
4 of Clubs
Ace of Diamonds
6 of Hearts
Jack of Clubs

The program defines an array suits for four suits (line 10) and
an array ranks for 13 cards in a suits (lines 11-12). Each
element in these arrays is a string. Consider the declaration
for array suits:

 const char* suits[] = {"Clubs", "Diamonds", "Hearts", "Spades"};

The suits[] part in the declaration declares an array. The const
char * part declares that each element in the array is a pointer
to char constants. The four values to be placed in the array are
"Clubs", "Diamonds", "Hearts", and "Spades". Each is stored in
memory as a null-terminated character string.

The deck is initialized with values 0 to 51 in lines 15-16. A
deck value 0 represents card Ace of Clubs, 1 represents card 2
of Clubs, 13 represents card Ace of Diamonds, 14 represents card
2 of Diamonds.

Lines 20-27 randomly shuffle the deck. After a deck is shuffled,
deck[i] contains an arbitrary value. deck[i] / 13 is 0, 1, 2, or
3, which determines a suit (line 32). deck[i] % 13 is a value
between 0 and 12, which determines a rank (line 33).

