
JSF AND VISUAL WEB
DEVELOPMENT

CHAPTER 41

Objectives
■ To explain what JSF is (§41.1).

■ To create a JSF page using NetBeans (§41.2).

■ To use JSF UI components (e.g., Static Text, Text Field, Button, Drop Down List, List
Box, Radio Button Group, Check Box Group, Text Area, Table) (§41.3).

■ To use JSF containers Grid Panel, Group Panel, and
Layout Panel to group components (§41.4).

■ To bind data with JSF UI components (§41.5).

■ To maintain persistency using session tracking (§41.6).

■ To validate input using Message components (§41.7).

■ To improve efficiency using virtual forms (§41.8).

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–1

41–2 Chapter 41 JSF and Visual Web Development

41.1 Introduction
The use of servlets, introduced in Chapter 39, is the foundation of the Java Web technology. It
is a primitive way to write server-side applications. JSP provides a scripting capability and al-
lows you to embed Java code in HTML. It is easier to develop Web programs using JSP than
servlets. However, JSP has some problems. First, it can be very messy, because it mixes Java
code with HTML. Second, using JSP to develop user interface is tedious. JavaServer Faces
(JSF) comes to rescue. JSF supports visual Web development. You can create a Web user in-
terface using a tool without writing any code. JSF completely separates Web UI from Java
code, so the application developed using JSF is easy to debug and maintain.

A couple of tools support JSF. This chapter demonstrates visual JSF using NetBeans 6.7.
Visual JSF is a plug-in for NetBeans 6.7. To install it, choose Tools, Pluggins, and select
Visual JSF.

41.2 Getting Started with Visual JSF
A simple example will illustrate the basics of developing visual JSF projects using NetBeans.
The example is a server-side application that displays the date and time on the server, as
shown in Figure 41.1.

servlets

JSP

JSF

NetBeans Visual Web Tool

create a project

FIGURE 41.1 The application displays the date and time on the server.

Here are the steps to create the application.

1. Choose File New Project to display the New Project dialog box. In this box, choose
Web in the Categories pane and Web Application in the Projects pane. Click Next to dis-
play the New Web Application dialog box.

2. In the New Web Application dialog box, enter and select the following fields, as shown
in Figure 41.2(a):

Project Name: jsfdemo
Project Location: c:\book
Check Set as Main Project

Click Next to display the dialog box for choosing servers and settings. Select the following
fields as shown in Figure 41.2(b). (Note: Some examples do not work in V3 without mod-
ifications of project files due to bugs in the new version. So, this chapter uses V2.)

Server: GlassFish V2
Java EE Version: Java EE 5

Click Next to display the dialog box for choosing frameworks, as shown in Figure 41.3. Check
Visual Web JavaServer Faces. Click Finish to create the project, as shown in Figure 41.4.

›

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–2

41.2 Getting Started with JSF 41–3

(a) (b)

FIGURE 41.2 The New Web Application dialog box enables you to create a new Web project.

FIGURE 41.3 Checking Visual Web JavaServer Faces creates a visual Web project.

A visual Web project is created with an empty page named Page1.jsp, as shown in
Figure 41.4. You see Page1 with subtabs in the content pane. The Design tab enables you
to design the UI visually. The JSP tab enables you to view and modify the JSP codes. The
Java tab enables you to view and modify the Java code. These three tabs are synchronized.
Whenever you make a change in the Design, the corresponding code in the JSP and Java
will change and vice versa.

The Palette window contains the UI components that you can drag and drop to the
Design pane.

Tip
There are several windows for a visual Web project. If a window (e.g., the Palette window) is not
displayed, choose an appropriate menu from the Windows menu to display it.

Now you are ready to create a page for displaying the current date and time on the server.
Here are the steps:

1. Rename Page1.jsp to CurrentTime.jsp. To do so, right-click the context menu on Page1.jsp
in the Project pane and choose Refactor Rename to display the Rename dialog box.
Enter CurrentTime as the new name and click Refactor to finish renaming.

›

palette window

Design tab

JSP tab

Java tab

renaming files

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–3

41–4 Chapter 41 JSF and Visual Web Development

FIGURE 41.4 An empty page is created in a new Visual Web project.

2. Click to select the Static Text icon from the Palette pane and drop it to the Design pane,
as shown in Figure 41.5. In the id field in the Properties pane for the static text, enter
stCurrentTime to change the id. Whenever you click a component in the Design
pane, its corresponding properties are displayed in the Properties pane. You can view
and modify the component’s properties in the Properties pane.

Static Text

FIGURE 41.5 A static text is placed in the Design pane.

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–4

41.2 Getting Started with JSF 41–5

FIGURE 41.6 You can modify the code in the Java tab.

3. Right-click on stCurrentTime in the Design pane to display a content menu, as
shown in Figure 41.5. Choose Add Binding Attributes. This step automatically gener-
ates code that enables you to access stCurrentTime in the Java source code.

4. Click the Java tab in the content pane and enter

stCurrentTime.setText("Current time on the server is "
+ new java.util.Date());

in the prerender method, as shown in Figure 41.6.

explicit URL

JSP file

page bean file
init
preprocess
prerender

5. Right-click on the jsfdemo project to display a context menu and choose Run to run the
JSF. This starts a Web browser to display the current date and time, as shown in Figure 41.1.

Note
By default, the first page in the project is set as the main page. You can access it using the URL
http://localhost:8080/jsfdemo. The explicit URL for this page is http://localhost:8080/jsfdemo/faces/
CurrentTime.jsp.

Note
If you choose the JSP tab, you will see the corresponding JSP file, as shown in Figure 41.7. The contents
of this file in XML mirrors the UI components in the Design pane. Whenever you add, remove, or
change the UI components in the Design pane, the contents in the JSP are also updated. It is possible
to modify the JSP file directly, but this is not recommended for new users. Modifying the JSP file mis-
takenly could corrupt the entire project. You can completely ignore the JSP file when using this tool.

Note
Clicking the Java tab in the content pane, you will see the Java source file, known as the page bean
file. This file contains several methods. Among them are the four JSF life-cycle methods init,
preprocess, prerender, and destroy.

The init method is called whenever the page is navigated to, either by directly via a URL, or
indirectly via page navigation. The preprocess method is called after the component tree has
been restored, but before any event processing takes place. The prerender method is called

add binding attributes

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–5

41–6 Chapter 41 JSF and Visual Web Development

FIGURE 41.7 You can see the code in the JSP tab.

just before rendering takes place. This method will be called only for the page that will actually be
rendered. The destroy method is called after rendering is completed for this request.

All these methods are automatically implemented. You can add the code to customize their
behaviors. Normally you should customize the prerender method to set appropriate properties
for the components for rendering.

41.3 JSF UI Components
JSF provides many user interface components that you can use in visual design. These compo-
nents are comparable to Swing components. They are JavaBeans components with similar prop-
erties and events as their counterparts in Swing. The frequently used components are grouped
into the Basic and Layout nodes in the Palette window. This section introduces some standard
components such as text fields, drop down lists, list boxes, radio buttons, check boxes, text areas,
and buttons, through an example. The example is to design a form, as shown in Figure 41.8.
Clicking the Register button displays the input in a separate form, as shown in Figure 41.9.

The example can be completed in three phases:

1. Create the initial input form.

2. Create the result form.

3. Write the code for handling the event.

Phase I: Creating the input form

1. Right-click the jsfdemo node in the Project window to display a context menu, and
choose New Visual Web JSF Page to display the New Visual Web JSF Page dialog
box. Enter Registrations in the File Name field. Click Finish to create Registra-
tions.jsp, as shown in Figure 41.10. Right-click Registration.jsp in the Projects pane to
display a context menu and choose Set As Start Page so this page will start when you
run the jsfdemo project.

›create a new page

destroy

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–6

41.3 JSF UI Components 41–7

set font and color

FIGURE 41.8 The form consists of various UI components.

FIGURE 41.9 The result from the input form is displayed in this form.

2. Drop a Static Text in the Design pane with the text Student Registration Form. You
can set a new font and color in the style property in the Properties window, if you wish.

3. Drop a text field and set its id to tfLastName, column to 15, and label to Last
Name:, as shown in Figure 41.11.

4. Drop a Text Field and change its id to tfMi, column to 1, and label to MI:.

5. Drop a Text Field and change its id to tfFirstName, column to 10, and label to
First Name:.

6. Drop a Radio Button Group. Change its id property to rbgGender, columns property
to 2, and label to Gender:.

7. Right-click the radio button group object in the Design to display its context menu,
choose Configure Default Options to display the Options Customizer dialog box. Set
the appropriate display and value, as shown in Figure 41.12(a).

8. Drop a Drop Down List and change its id to ddMajor and label to Major:.

create a text field

create a text field

create a text field

radio button group

radio button values

drop down list

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–7

41–8 Chapter 41 JSF and Visual Web Development

FIGURE 41.10 A new JSF page is created.

FIGURE 41.11 tfLastName has been moved to desired location.

(a) For radio buttons (b) For list box

FIGURE 41.12 You can customize the display name and value for radio buttons and list boxes.

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–8

41.3 JSF UI Components 41–9

list box

list values

check box group

FIGURE 41.13 form1 is created to contain input components.

9. Right-click the list in the Design to display its context menu, and choose Configure
Default Options to display the Options Customizer dialog box. Set the appropriate
display and value, as shown in Figure 41.12(b).

10. Drop a List Box and change its id to lbxMinor, label to Minor:, rows to 2, and
multiple to true.

11. Right-click the box in the Design to display its context menu, and choose Configure
Default Options to display the Options Customizer dialog box. Set display and value
the same as shown in Figure 41.12(b).

12. Drop a Check Box Group. Change its id to chkgHobby, label to Hobby:, and
columns to 3. Right-click the box in the Design to display its context menu, choose
Configure Default Options to display the Options Customizer dialog box. Set the dis-
play name and values for Tennis, Golf, and Ping Pong.

13. Drop a Static Text with the text Remarks:.

14. Drop a Text Area with id and columns set to taRemarks and 70.

15. Drop a Button and set its id to btRegister and its text to Register.

16. Add binding attribute for tfLastName, tfMi, tfFirstName, rbgGender, ddMa-
jor, lbxMinor, chkgHobby, and taRemarks. To add binding attribute for a com-
ponent, right-click the component in the Design pane to display the context menu and
choose Add Binding Attribute.

The user interface for the input is now created as shown in Figure 41.13. All these components
are contained in form1. Now create form2 for displaying the data collected from the first form.

create a text area

create a button

add binding attribute

create another form

list values

Phase II: Creating the result form

1. Uncheck the visible property for form1 to set it false so form1 is not displayed in
the Design pane.

2. Drop a Form from the Layout tab in the Palette pane to create a form named form2, as
shown in Figure 41.14.

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–9

41–10 Chapter 41 JSF and Visual Web Development

FIGURE 41.14 form1 is invisible. form2 is created.

FIGURE 41.15 Static texts are added to form2.

3. Drop eight Static Texts into form2 and set their id to stLastName, stMi,
stFirstName, stGender, stMajor, stMinor, stHobby, and stRemark, respectively,
as shown in Figure 41.15. Add binding attributes for all these static texts.

4. Set the rendered property in form2 to false. form2 will not be displayed when the
page is started.

5. Now check the visible property of form1 to true and the visible property of
form2 false.

6. Add binding attributes for form1 and form2. In the Navigator pane, right-click form1
to display the context menu and choose Add Binding Attribute. Similarly you can add
binding attribute for form2.

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–10

41.4 JSF UI Containers 41–11

event handler

form1 not rendered

Phase III: Handling the event
We are ready to implement the code to handle the event for the Register button. Double-click
the Register button to generate the handler method btRegister_action in the page bean
file. Implement the methods as follows:

1 public String btRegister_action() {
2 // TODO: Replace with your code
3 form1.setRendered(false);
4 form2.setRendered(true);
5 form2.setVisible(true);
6 stLastName.setText("Last name is " + tfLastName.getText());
7 stMi.setText("MI is " + tfMi.getText());
8 stFirstName.setText("First name is " + tfFirstName.getText());
9
10 stGender.setText("Selected gender is " +
11 rbgGender.getSelected().toString());
12 stMajor.setText("Selected major is " +
13 ddMajor.getSelected().toString());
14
15 String[] selectedMinors = (String[])(lbxMinor.getSelected());
16 String minors = "";
17 for (int i = 0; i < selectedMinors.length; i++)
18 minors += selectedMinors[i];
19 stMinor.setText("Selected minors are " + minors);
20
21 String[] selectedHobbies = (String[])(chkgHobby.getSelected());
22 String hobbies = "";
23 for (int i = 0; i < selectedHobbies.length; i++)
24 hobbies += selectedHobbies[i];
25 stHobby.setText("Selected hobbies are " + hobbies);
26
27 stRemark.setText("Remarks are " + taRemarks.getText());
28 return null;
29 }

Clicking the Register button displays form2. form1’s rendered property is set to false
(line 3) in order to hide it. form2’s rendered property is set true to make it visible (line 4).
form2’s visible property is set true to ensure that the form itself is visible (line 5). For a
component to be displayed, both visible and rendered properties must be true.

All the JSF UI components are JavaBeans components. Their properties have the associated
get and set methods. You can obtain the text in a text field and text area using the getText()
method (lines 6–8). You can obtain the selected items from the a radio button group, check box
group, drop down list, or list box using the getSelected() method (lines 11, 13, 15, 21).

Note
The second form is displayed when the Register button is clicked. When form2 is displayed,
form1 will not be shown. This is achieved by setting form1’s rendered property to false.
Note in the Design pane, you are free to move form2 to a desired location even if it overlaps form1.

41.4 JSF UI Containers
Like Swing, JSF provides containers that can be used to group components to achieve a de-
sired layout. Three containers are available under the Layout node in the Palette: GridPanel,
GroupPanel, and LayoutPanel. GridPanel is like the Swing GridLayout. GroupPanel
is similar to the Swing FlowLayout. LayoutPanel organizes child components using flow
or absolute positioning.

Consider the following example that computes loan payments. The example lets the user
enter a loan amount, number of years, and annual interest rate, as shown in Figure 41.16.

form2 rendered

get text

selected radio button

selected item

selected items

getText()

getSelected()

GridPanel

GroupPanel

LayoutPanel

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–11

41–12 Chapter 41 JSF and Visual Web Development

Clicking the Compute Loan button displays the monthly payment and total payment, as
shown in Figure 41.17.

create a new page

create a grid panel

FIGURE 41.16 The form lets the user enter loan information.

FIGURE 41.17 The loan payment is computed and displayed.

Here are the steps to create the UI:

1. Right-click the jsfdemo node in the Project window to display a context menu, choose
New Visual Web JSF Page to display the New Page dialog box. Enter ComputeLoan
in the File Name field. Click Finish to create ComputeLoan.jsp. Set ComputeLoan.jsp
as the start page for the project.

2. Drop a GridPanel to the Design pane and set its id to gridPanel1 and columns to 2.

3. Drop a Static Text, a Text Field, a Static Text, a Text Field, a Static Text, and a Text
Field to the grid panel in this order. Set the static text to Loan Amount, Number of
Years, and Annual Interest Rate. Change the text fields id to tfLoanAmount,
tfNumberOfYears, and tfAnnualInterestRate. Add binding attributes for the
text fields.

4. Drop a Button to the grid panel and set its id to btComputeLoan and text to
Compute Loan.

5. Drop another GridPanel to the Design pane below the preceding grid panel and set its
id to gridPanel2 and columns to 2.

6. Drop a Static Text, a Text Field, a Static Text, and a Text Field to gridPanel2 in this
order. Set the static text to Monthly Payment and Total Payment. Change the id of
the text fields to tfMonthlyPayment and tfTotalPayment. Add binding attributes
for tfMonthlyPayment, tfTotalPayment, and gridPanel2.

The user interface is created as shown in Figure 41.18.

›

create a grid panel

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–12

41.4 JSF UI Containers 41–13

FIGURE 41.18 The panels are created to group UI components.

Tip
If the order of the components in a panel is not correct, you can reorder them in the Navigator
pane using the mouse.

Double-click the Compute Loan button in the Design pane to generate the method
btComputeLoan_action(). Implement it as follows:

1 public String btComputeLoan_action() {
2 double loanAmount =
3 Double.parseDouble(tfLoanAmount.getText().toString().trim())
4 int numberOfYears =
5 Integer.parseInt(tfNumberOfYears.getText().toString().trim());
6 double annualInterestRate = Double.parseDouble(
7 tfAnnualInterestRate.getText().toString().trim());
8
9 chapter41.Loan loan = new chapter41.Loan(
10 annualInterestRate, numberOfYears, loanAmount);
11
12 gridPanel2.setRendered(true);
13 tfMonthlyPayment.setText(loan.getMonthlyPayment() + "");
14 tfTotalPayment.setText(loan.getTotalPayment() + "");
15
16 return null;
17 }

The handler obtains loanAmount, numberOfYears, and annualInterestRate from the
input text fields (lines 2–7). The program creates a Loan object (lines 9–10). You need to cre-
ate a Loan class for this method to work. To create the Loan class, choose File New Java
Class to display the New Java Class dialog box. Enter Loan in the Class Name field and
chapter41 in the package field. The Loan class was given in Listing 10.2.

Set gridPanel2’s rendered property to false. Run the program using the URL
http://localhost:8080/jsfdemo/faces/ComputeLoan.jsp. You will see the user interface, as shown in

››

reorder components

get loanAmount

get numberOfYears

get annualInterestRate

create a loan

gridPanel2 rendered true
display monthly payment
display total payment

create Loan class

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–13

41–14 Chapter 41 JSF and Visual Web Development

Figure 41.16. When you click the Compute Loan button, gridPanel2’s rendered property to
true (line 12). You will see the monthly payment and total payment displayed in Figure 41.17.

41.5 Binding Data with UI Components
You can bind data from a SQL query to a JSF UI component. This is a powerful feature and
makes database programming easy. These JSF UI components are known as data-aware
components.

Consider the following example that lets the user choose a course, as shown in Figure 41.19.
After a course is selected in the drop down list, the students enrolled in the course are displayed
in the table, as shown in Figure 41.20. In this example, all the course titles in the Course table
are bound to the drop down list and the query result for the students enrolled in the course is
bound to the table.

data-aware components

create database connection

FIGURE 41.19 You need to choose a course and display the students enrolled in the course.

FIGURE 41.20 The table displays the students enrolled in the course.

To develop this example, first you have to create a new database connection. In the
Services pane, right-click the Database node and choose New Connection in the context
menu (Figure 41.21(a) to display the New Database Connection dialog box, as shown in
Figure 41.21(b)).

Use the same MySQL database we have been using since Chapter 37. Enter the database in-
formation, as shown in Figure 41.21(b). Click OK to create the database connection. You will
see the database under the Databases node in the Services tab, as shown in Figure 41.22.

run ComputeLoan.jsp

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–14

41.5 Binding Data with UI Components 41–15

(a) (b)

FIGURE 41.21 You can create a database connection from the Services pane.

FIGURE 41.22 You can access the database from NetBeans.

Create a new Visual Web JSF page named DisplayStudent and create the user interface
by dropping a Drop Down List, and a Table to the Design pane, as shown in Figure 41.23.
Name the drop down list and table as ddCourse and tbStudent. Set the label property for
ddCourse to Choose a course:.

create new page

create UI

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–15

41–16 Chapter 41 JSF and Visual Web Development

FIGURE 41.23 The user interface is created in the Design pane.

FIGURE 41.24 A data provider is created.

bind data

The drop down list should be bound to the course titles from the Course table. Click the
Course table in the database connection under the Database node in the Services pane, as
shown in Figure 41.22. Drop the Course table to the table component in the Design pane. You
will see courseDataProvider created in the Navigator pane, as shown in Figure 41.24.

To bind the data for ddCourse, right-click on ddCourse to display a context menu in the De-
sign and choose Bind to Data to display the Bind to Data dialog box, as shown in Figure 41.25.
Select course.courseId in the Value field and course.title in the Display field. Click OK
to close the dialog box. Add binding attribute for ddCourse.

create data provider

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–16

41.5 Binding Data with UI Components 41–17

FIGURE 41.25 You can set value and display name in a drop down box.

FIGURE 41.26 The studentDataProvider is created.

The table should be bound to a query result for the students enrolled in a selected course.
Click the Student table in the database connection under the Database node in the Services
pane. Drop the table to the table component tbStudent in the Design pane. You will see
studentDataProvider created in the Navigator pane, as shown in Figure 41.26.

Each data provider has a cachedRowSet property that specifies a RowSet. studentDat-
aProvider uses studentRowSet, as shown in Figure 41.27. Double-click studen-
tRowSet under the SessionBean1 node in the Navigator pane to display the row set in the
content pane, as shown in Figure 41.28.

create data provider

display query visually

Modify the query as follows:

select all Student.ssn,
Student.firstName,
Student.mi,

modify query

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–17

41–18 Chapter 41 JSF and Visual Web Development

FIGURE 41.28 The query is visually displayed in the content pane.

FIGURE 41.27 You can define a SQL statement in studentRowSet.

Student.lastName,
Student.phone,
Student.birthDate,
Student.street,
Student.zipCode,

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–18

41.5 Binding Data with UI Components 41–19

FIGURE 41.29 The tables and their relationship in the SQL query are visually displayed.

Student.deptId
from Student, Enrollment, Course
where course.courseId = ?

and student.ssn = enrollment.ssn
and enrollment.courseId = course.courseId

Note that the ? mark is a placeholder for the prepared statement. Close and reopen
studentRowSet. You will see the new data diagram, as shown in Figure 41.29. If you don’t
see it, go back to the Design pane and refresh the project, then reopen studentRowSet.

Message Group

set courseId

bind data

prepared statement

You can customize the table’s layout by right-clicking the table in the Design pane and
choosing Table Layout to display the Table Layout dialog box, as shown in Figure 41.30.
Choose the selected columns and set the header for birthDate to Birth Date, as shown in
Figure 41.30. Click OK to close the dialog box.

Drop a Message Group component to the upper right corner of the page. This component
is useful to display diagnostic errors.

Double-click the drop down list to generate the ddCourse_processValueChange-
(ValueChangeEvent event) handler and implement it as follows:

1 public void ddCourse_processValueChange(ValueChangeEvent e) {
2 try {
3 getSessionBean1().getStudentRowSet().setObject(
4 1, ddCourse.getSelected());
5 studentDataProvider.refresh();
6 }
7 catch (Exception ex) {
8 error(ex.toString());
9 }
10 }

The studentRowSet object can be obtained using setSessionBean1().getStuden-
tRowSet() (line 3). studentRowSet object is an instance of JDBC RowSet. The

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–19

41–20 Chapter 41 JSF and Visual Web Development

setObject method sets the parameter value (line 4). The refresh() method executes the
query for the row set.

The error method displays the error message in the Message Group component (line 8).
The Message Group component is not displayed if the error method is not called.

Replace the body of the prerender method with the following code to ensure that the
table is properly displayed initially.

public void prerender() {
try {
if (ddCourse.getSelected() == null) {
courseDataProvider.cursorFirst();
getSessionBean1().getStudentRowSet().setObject(
1, courseDataProvider.getValue("Course.courseId"));

studentDataProvider.refresh();
}

}
catch (Exception ex) {
error(ex.toString());

}
}

Right-click on the drop down list in the Design pane to choose Auto-Submit on Change. In the
Properties window, the following code appears in the onchange property:

webui.suntheme.common.timeoutSubmitForm(this.form, 'ddCourse');

Now when the user changes a value in the drop down list, the Web browser automatically sub-
mits the change.

Run the program using the URL http://localhost:8080/jsfdemo/faces/DisplayStudent.jsp. You
will see the user interface, as shown in Figure 41.19.

override prerender

auto-submit

FIGURE 41.30 You can customize the layout of the table.

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–20

41.6 Session Tracking 41–21

FIGURE 41.31 The user enters a guess and the program displays the result.

41.6 Session Tracking
Chapter 40, “JSP,” introduced session tracking using JavaBeans by sharing the JavaBeans ob-
jects among different pages. You can specify the JavaBeans objects at the application scope,
session scope, page scope, or request scope. JSF supports session tracking using JavaBeans at
the application scope, session scope, and request scope.

Consider the following example that prompts the user to guess a number. When the page starts,
the program randomly generates a number between 0 and 99. This number is stored in the session.
When the user enters a guess, the program checks the guess with the random number in the session
and tells the user whether the guess is too high, too low, or just right, as shown in Figure 41.31.

create GuessNumber page

create UI

session bean property

Create a new page named GuessNumber and create the user interface by dropping a text
field with id tfGuess and label “Enter your guess: ” and a Button with id btGuess, and
a Static Text with id stResponse for displaying the program’s response to the user’s guess,
as shown in Figure 41.32. Add binding attributes for tfGuess and stResponse.

To store the random number in the session, create a property named number in
SessionBean1.java with get and set methods as follows:

int number;

public int getNumber() {
return number;

}

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–21

41–22 Chapter 41 JSF and Visual Web Development

FIGURE 41.32 The user interface is created in the Design pane.

FIGURE 41.33 You can modify the code in SessionBean1.java.

public void setNumber(int number) {
this.number = number;

}

SessionBean1.java is in the Source Packages folder in the jsfdemo project.
Add the following highlighted code in the constructor of SessionBean1.java, as shown in

Figure 41.33:

public SessionBean1() {

}
number = (int)(Math.random() * 100);create random number

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–22

41.7 Validating Input 41–23

FIGURE 41.34 The error messages are displayed if input is invalid.

implement button handler

get guess

too low

too high

Double-click the Guess button in the Design to generate the handler btGuess_action()
and implement the method as follows:

1 public String btGuess_action() {
2 int guess = Integer.parseInt(tfGuess.getText().toString().trim());
3
4 if (guess <)
5 stResponse.setText("Too low");
6 else if (guess >)
7 stResponse.setText("Too high");
8 else
9 stResponse.setText("You got it!");
10
11 return null;
12 }

A session bean object is automatically created when a session starts. The getSession-
Bean1() method (lines 4, 6) returns the session bean object.

41.7 Validating Input
In the preceding GuessNumber page, an error would occur if you did not enter a guess or
you entered a string rather than an integer before clicking the Guess button. A simple way
to fix the problem is to check the text field before processing any event. JSF provides sev-
eral convenient and powerful ways for input validation. You can perform validation to
ensure that the required field has been filled and the input is an integer for the preceding
example.

Consider the following example that displays a form for collecting user input as shown in
Figure 41.34. All text fields in the form must be filled. If not, error messages are displayed.
The SSN must be formatted corrected. If not, an error is displayed. If all input is correct,
clicking Submit displays the result in a static text, as shown in Figure 41.35.

getSessionBean1().getNumber()

getSessionBean1().getNumber()

getSessionBean1()

Create a new page named ValidateForm and create the user interface as follows:

1. Drop a GridPanel to the Design and set its columns to 2. Add four Static Texts, four
Text Fields, and a Button to the grid panel, as shown in Figure 41.36. Set the id

create ValidateForm page
create UI
create a GridPanel

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–23

41–24 Chapter 41 JSF and Visual Web Development

FIGURE 41.36 The user interface is created in the Design pane.

escape property

FIGURE 41.35 The Submit button is processed after input is validated.

You can use the Message component to display input errors. Drop four Message components next
to each text field, as shown in Figure 41.37. To associate a Message component with a text field,
choose an appropriate value in the Message’s for property, as shown in Figure 41.37. Message will
automatically display an error message when input validation fails in the associated text field.

display error in Message

for property

property of the text fields to tfName, tfSSN, tfAge, and tfHeight, respectively. Set
the button’s id to btSubmit and label to Submit.

2. Drop a Static Text below the grid panel and set its id to stResult. Set its escape
property to false so you can display HTML contents in the static text.

3. Add binding attributes for tfName, tfSSN, tfAge, tfHeight, and stResult.add binding attribute

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–24

41.7 Validating Input 41–25

FIGURE 41.37 Four Message components are created in the Design.

FIGURE 41.38 You can specify the maximum and minimum properties for a lengthValidator.

required property

LengthValidator

For each text field, set its required property true to indicate that an input value is
required for the field.

You can validate the length of the input using the LengthValidator. Suppose the name
must have minimum 1 character and maximum 10 characters. To set its length validator,
choose new LengthValidator() in the validatorExpression property for tfName.
You will see lengthValidator1 appearing in the Navigator pane, as shown in Figure 41.38.
Set the minimum and maximum properties for lengthValidator1 to 1 and 10.

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–25

41–26 Chapter 41 JSF and Visual Web Development

The format for SSN is ddd-dd-dddd, where d is a digit. You need to create a custom val-
idator and use a regular expression to validate a SSN. Right-click tfSSN in the Design, and
choose Edit Event Handler validate to generate the method named tfSSN_validate in
the Java source page. Implement the method as follows:

1 public void tfSSN_validate(FacesContext context,
2 UIComponent component, Object value) {
3 String ssn = String.valueOf(value);
4
5 if () {
6 (new FacesMessage(
7 "Enter a valid SSN, e.g., 123–44–5678"));
8 }
9 }

The program checks whether the ssn is correctly formatted. If not, a ValidatorException
is thrown in line 6.

Tip
Right-click on ValidatorException in the Editor pane to display a context menu and choose Fix Imports
to import javax.faces.validator.ValidatorException.

Similarly, you can write the code to ensure that age is an integer between 1 and 135 and
height is a double value between 2.0 and 10.0.

The Submit button can be implemented as follows:

1 public String btSubmit_action() {
2 stResult.setText("The inputs you entered are
" +
3 "Name: " + tfName.getText() + "
" +
4 "SSN: " + tfSSN.getText() + "
" +
5 "Age: " + tfAge.getText() + "
" +
6 "Height: " + tfHeight.getText() + "
");
7
8 return null;
9 }

41.8 Virtual Forms
When you submit a form, all input components in the form participate in the submission.
However, not all these components are needed for a particular submission. For example,
when you click the Compute Loan button in the form in Figure 41.39, only the text fields
for loan amount, interest rate, and number of years need to be submitted. When you click
the Compute Body Mass Index button, only the text fields for weight and height need to be
submitted.

To improve efficiency, you may define a virtual form to group input components with a
submission component (e.g., a button or a drop down list with autosubmit enabled). The
input components participate in the virtual form. When the user interacts with a submission
component that submits a virtual form, the input components in the virtual form are submit-
ted while the other input components not defined in the virtual form on the page are ignored.

Let us build an application for Figure 41.39 using virtual forms. Create a new page named
VirtualFormDemo and create the user interface, as shown in Figure 41.40. The text fields
are named tfLoanAmount, tfAnnualInterestRate, tfNumberOfYears, tfWeight,
and tfHeight. Two buttons are named btComputeLoan and btComputeBMI. Two static
texts are named stLoanResult and stBMIResult. Add binding attributes for all text
fields and static texts.

We are going to create two virtual forms: one for grouping the components for computing
loan and the other for grouping the components for computing body mass index.

throw new ValidatorException
!ssn.matches("[\\d]{3}-[\\d]{2}-[\\d]{4}")

›

implement Submit button

virtual form

create UI

regular expression

regular expression
throw
ValidatorException

ValidatorException

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–26

41.8 Virtual Forms 41–27

FIGURE 41.39 The application lets you compute loan and body mass index.

FIGURE 41.40 The user interface is created for computing loan and body mass index.

(a) (b)

FIGURE 41.41 You can create/delete/configure virtual forms.

1. Ctrl-click to select tfLoanAmount, tfAnnualInterestRate, tfNumberOfYears, and
btComputeLoan. Right-click one of the selected components to display a context menu
and choose Configure Virtual Forms to display the Configure Virtual Form dialog box, as
shown in Figure 41.41(a). You should see tfLoanAmount, tfAnnualInterestRate,

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–27

41–28 Chapter 41 JSF and Visual Web Development

tfNumberOfYears, and btComputeLoan in the upper left corner in the dialog box. Click
the New button to create a virtual form named virtualForm1. Choose Yes in both the Par-
ticipate and Submit columns, as shown in Figure 41.41(b).

2. Ctrl-click to select tfWeight, tfHeight, and btComputeBMI. Right-click one of the
selected components to display a context menu and choose Configure Virtual Forms to
display the Configure Virtual Form dialog box. You should see tfWeight, tfHeight,
and btComputeBMI in the upper left corner in the dialog box. Click the New button to
create a virtual form named virtualForm2. Choose Yes in both the Participate and
Submit columns, as shown in Figure 41.42.

FIGURE 41.42 Two virtual forms are created.

Implement the handlers for the two buttons as follows:

public String btComputeLoan_action() {
double loanAmount =
Double.parseDouble(tfLoanAmount.getText().toString().trim());

int numberOfYears =
Integer.parseInt(tfNumberOfYears.getText().toString().trim());

double annualInterestRate = Double.parseDouble(
tfAnnualInterestRate.getText().toString().trim());

chapter41.Loan loan = new chapter41.Loan(
annualInterestRate, numberOfYears, loanAmount);

stLoanResult.setText("Monthly payment is " +
loan.getMonthlyPayment() + " Total payment is " +
loan.getTotalPayment());

return null;
}

public String btBMI_action() {
final double KILOGRAMS_PER_POUND = 0.45359237;
final double METERS_PER_INCH = 0.0254;

double weight = Double.parseDouble(tfWeight.getText().toString());
double height = Double.parseDouble(tfHeight.getText().toString());

double bmi = weight * KILOGRAMS_PER_POUND /
((height * METERS_PER_INCH) * (height * METERS_PER_INCH));

stBMIResult.setText("BMI is " + (int)Math.round(bmi * 100) / 100.0);

return null;
}

Now you can run the program (see Figure 41.39). Clicking the Compute Loan button will sub-
mit the text fields for loan amount, annual interest rate, and number of years. Clicking
Compute BMI will submit the text fields for weight and height.

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–28

Review Questions 41–29

init 41–5
preprocess 41–5
prerender 41–5
destroy 41–6

CHAPTER SUMMARY

1. JSF enables you to use a visual design tool to develop UI for Web applications.

2. A JSF page has three tabs: Design, JSP, and Java. The Design tab enables you to visu-
ally design UI. The JSP tab enables you to view and modify the JSP script for the
page. The Java tab enables you to view and modify the page bean Java source code.

3. JSF uses the life-cycle methods init, preprocess, prerender, and destroy to
control the execution of a JSF page.

4. JSF contains Swinglike UI components. You can click and drop these components to
the Design pane to create UI.

5. JSF contains Grid Panel, Group Panel, and Layout Panel containers for grouping com-
ponents.

6. You can create a database connection from the Databases node in the Services pane
and bind database queries with JSF UI components.

7. You can perform session tracking using the SessionBean.

8. You can validate input to ensure that the required field has been filled and the input is
formatted correctly.

9. You can use virtual forms to group the participants of a form to improve efficiency.

REVIEW QUESTIONS

Sections 41.1–41.2
41.1 What is JSF?

41.2 How do you create a JSF project in NetBeans?

41.3 How do you create a JSF page in a JSF project?

41.4 Describe the life-cycle methods init, preprocess, prerender, and destroy.

41.5 Each JSF page has a .jsp file. What is in the JSP file? Can you modify it directly?

41.6 Each JSF page has a page bean file. What is in the page bean file? Can you modify
it directly?

Section 41.3
41.7 How do you set the initial value and display names in a drop down list and in a list box?

41.8 How do you specify radio buttons and their names in a radio button group?

41.9 How do you specify check box buttons and their names in a check box button group?

41.10 How do you hide a component so that it will not be displayed?

41.11 What method should be used to obtain the input from a text field or a text area?

data binding 41–14
palette window 41–3
UI container 41–11

Note
Supplement V.F, “More on JSF and Visual Web Development,” provides additional examples on visual
Web development, such as performing database inserts, updates, and deletes, and working with Ajax.

KEY TERMS

more supplemental examples

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–29

41–30 Chapter 41 JSF and Visual Web Development

FIGURE 41.43 This JSF application enables you to perform addition, subtraction,
multiplication, and division.

41.12 What method should be used to obtain the selected item(s) from a drop down list
or a list box?

41.13 Can you create two forms in one JSF page?

Section 41.4
41.14 What containers are available in JSF?

41.15 If the order of the components in a container is not correct, how do you reorder them?

Section 41.5
41.16 How do you create a database connection?

41.17 How do you create a data provider?

41.18 How do you modify a row set?

41.19 How do you create a table and bind a data provider with the table?

Section 41.6
41.20 How does JSP implement session tracking?

41.21 How do you create a JavaBeans property?

41.22 How do you obtain a JavaBeans property in the page bean file?

Section 41.7
41.23 What component can be used to automatically display the error message if in-

valid input is entered?

41.24 How do you set a Message component to associate with an input component?

41.25 What property for an input component should be checked to specify that an
input is required?

41.26 How do you check the format of input using regular expressions?

PROGRAMMING EXERCISES

41.1* (Factorial table in JSF) Rewrite Exercise 40.1 using JSF. Drop a Static Text to
display the result. Set its escape property to false to display it as HTML contents.

41.2* (Multiplication table in JSP) Rewrite Exercise 40.2 using JSF.

41.3* (Calculator) Write a calculator to perform addition, subtraction, multiplication,
and division, as shown in Figure 41.43.

41.4* (Calculating tax in JSP) Rewrite Exercise 40.4 using JSF.

41.5* (Multiple-question opinion poll) Rewrite Exercise 40.13 using JSF.

41.6* (Addition quiz) Rewrite Exercise 40.14 using JSF.

41.7* (Subtraction quiz) Rewrite Exercise 40.15 using JSF.

41.8* (Guessing birth date) Rewrite Exercise 40.16 using JSF.

41.9* (Guessing the capitals) Rewrite Exercise 40.17 using JSF.

M41_LIAN0807_08_SE_C41.QXD 11/16/09 10:18 AM Page 41–30

