Chapter 10 Thinking in Objects

1. No. It must also contain no get methods that would return a reference to a mutable data field object.

2. Yes.

3. No, because values is a reference type.

4.
i + j is 23 (because i (value of 2) is concatenated with string j + j is, then j (value of 3) is concatenated with string i + j is 2.)

k is 2

j is 0

5.
this refers to the object itself
 6.
Swap line 5 with line 6

Lines 10, 14, should be this.p = p;

7.
Test.id = 45; This is wrong, since id is an instance member and cannot be accessed from a class.
8. No. The Loan class has the getLoanDate() method that returns loanDate. loanDate is an object of the Date class. Since Date is mutable, the contents of loanDate can be changed. So, the Loan class is not immutable.

9. Yes.

10.

Aggregation models has-a relationships and represents an ownership relationship between two objects.

11.

An object can contain another object. The relationship between the two is called composition.

12.

The Math class defines a private no-arg constructor to prevent the user from creating objects for this class. Since all methods are static in this class, there is no need to create objects from this class.

13.

See Section 10.11

14.
See the section "Processing Primitive Type Values as Objects."

15.

Integer i = new Integer("23");

Answer: Correct

Integer i = new Integer(23);

Answer: Correct

Integer i = Integer.valueOf("23");

Answer: Correct

Integer i = Integer.parseInt("23",8);

Answer: Incorrect

Double d = new Double();

Answer: Incorrect, no default constructor in Double

Double d = Double.valueOf("23.45");

Answer: Correct

int i = (Integer.valueOf("23")).intValue();

Answer: Correct

double d = (Double.valueOf("23.4")).doubleValue();

Answer: Correct

int i = (Double.valueOf("23.4")).intValue();

Answer: Correct

String s = (Double.valueOf("23.4")).toString();

Answer: Correct

16. Use new Integer(int).toString() to convert an integer to a string. Use new Double(double).toString() to convert a double to a string.

17.

3
-1
18.

10
10
16
11
11
17

19.

Integer x = 8; // Correct, this is same as x = new Integer(3 + 5)

Integer x = 3; // Correct

Double x = 3; // Wrong, this is same as Double x = new Integer(3)

Double x = 3.0; // Correct

int x = new Integer(3); // Correct

int x = new Integer(3) + new Integer(4); // Correct

20.

3
-1
21. The output is 3. Please note that BigInteger and BigDecimal are immutable.

