Chapter 11 Inheritance and Polymorphism

1.
False.

A subclass is an extension of a superclass and normally contains more details information than its superclass.

2.
The extends keyword is used to define a subclass that extends a superclass.

3.
Single inheritance allows a subclass to extend only one superclass. Multiple inheritance allows a subclass to extend multiple classes. Java does not allow multiple inheritance.

4.
(a) The printout is

A’s no-arg constructor is invoked

(b) The default constructor of B attempts to invoke the default of constructor of A, but class A's default constructor is not defined.

5.
A subclass can explicitly invoke a suplerclass’s constructor using the super keyword.

6.
False.

 If a subclass’s constructor explicitly invoke a superclass’s constructor, the superclass’s no-arg constructor is not invoked.

7.
False.

You can only override accessible instance methods.

8.
False.

You can only override accessible instance methods.

9.
Use super() or super(args). This statement must be the first in the constructor in the subclass.

10.
Use super.method() or super.method(args).

11.
The following lines are erroneous:

{

 radius = radius; // Must use this.radius = radius

}

class B extends Circle

{

 Circle(radius); // Must use super(radius)

 length = length; // Must use this.length = length

}

public double getArea()

{

 return getArea()*length; // super.getArea()

}

12.
Method overloading defines methods of the same name in a class. Method overriding modifies the methods that are defined in the superclasses.

13.
It is method overridden.

14.
It will be a syntax error.

15.
It is method overloading.

16.
It forces the compiler to check the signature of the overridden method to ensure that the method is defined correctly.

17.

Polymorphism means that a variable of a supertype can refer to a subtype object. A method may be implemented in several classes along the inheritance chain. The JVM decides which method is invoked at runtime. This is known as dynamic binding.
18.

Matching a method signature and binding a method implementation are two separate issues. The declared type of the reference variable decides which method to match at compile time. The compiler finds a matching method according to parameter type, number of parameters, and order of the parameters at compile time. A method may be implemented in several subclasses. The JVM dynamically binds the implementation of the method at runtime, decided by the actual class of the object referenced by the variable.
19.

new int[50] cannot be assigned to into a variable of Object[] type, but new Integer[50], new String[50], or new Object[50] are fine.

20.

Line 6 causes a compile error, because int[] cannot be passed to Object[].

21.

(a)

Person

Student

(b)

Person

Person

22. B’s constructor is invoked

A’s constructor is invoked

The default constructor of Object is invoked, when new A(3) is invoked. The Object’s constructor is invoked before any statements in B’s constructor are executed.

23.

· Yes. You can always successfully cast an instance of a subclass to a superclass.

· No. You can always successfully cast an instance of a superclass to a subclass.

24.
(a)

(circle instanceof GeometricObject1) => true
(object1 instanceof GeometricObject1) => true
(circle instanceof Circle1) => true
(object1 instanceof Circle1) => false

(b)

Yes, because you can always cast from subclass to superclass.

(c)

Causing a runtime exception (ClassCastExcpetion)

 25.

Is fruit instanceof Fruit true?
true

Is fruit instanceof Orange true?
false

Is fruit instanceof Apple true?
true

Is fruit instanceof GoldDelicious true? true

Is fruit instanceof Macintosh true?
false

Is orange instanceof Orange true?
true

Is orange instanceof Fruit true?
true

Is orange instanceof Apple true?
false

Suppose the method makeApple is defined in the Apple class. Can fruit invoke this method? Yes

Can orange invoke this method? No

Suppose the method makeOrangeJuice is defined in the Orange class. Can orange invoke this method? Yes.

Can fruit invoke this method?
No.

 Is the statement Orange p = new Apple() legal? No

Is the statement Macintosh p = new Apple() legal? No

Is the statement Apple p = new Macintosh() legal? Yes
26.

Object apple = (Apple)fruit;

Causes a runtime ClassCastingException.

27.
Yes, because these two methods are defined in the Object class; therefore, they are available to all Java classes. The subclasses usually override these methods to provide specific information for these methods.

The toString() method returns a string representation of the object; the equals() method compares the contents of two objects to determine whether they are the same.

28. The output is false if the Circle class in (a) is used. The Circle class has two overloaded methods: equals(Circle circle) defined in the Circle class and equals(Object circle) defined in the Object class, inherited by the Circle class. At compilation time, circle1.equals(circle2) is matched to equals(Object circle), because the declared type for circle1 and circle2 is Object. (Note that either the declared type for circle1 and circle2 is Object would cause circle1.equals(circle2) to match circle1.equals(Object circle) by the compiler.

The output is true if the Circle class in (b) is used. The Circle class overrides the equals(Object circle) method defined in the Object class. At compilation time, circle1.equals(circle2) is matched to equals(Object circle) and at runtime the equals(Object circle) method implemented in the Circle class is invoked.

What would be the output if Object is replaced by Circle in the Test class using the Circle class in (a) and (b), respectively? The output would be true for (a), because circle1.equals(circle2) matches circle1.equals(Circle object) exactly in this case. The output would be true for (b) because equals(Object c) is overridden in the Circle class.

29.

How do you create an ArrayList for storing double values, use
ArrayList<Double> list = new ArrayList<Double>();

How do you append an object to a list?
list.add(object);

How do you insert an object at the beginning of a list?
list.add(0, object);

How do you find out the number of objects in a list?
list.size();

How do you remove a given object from a list?
list.remove(object);

How do you remove the last object from the list?
list.remove(list.size() - 1);

How do you check whether a given object is in a list?
list.contains(object);

How do you retrieve an object at a specified index from a list?
list.get(index);

30.

Error 1:

list.add(new java.util.Date());

is wrong, because it is an array list of strings. You cannot add Date objects to this list.

Error 2:

list.set(3, "Dallas");

is wrong because there is no element at index 3 in the list.

Error 3:

list.get(3)
is wrong because there is no element at index 3 in the list.

31. No. Here is the reason: Suppose the list contains two string elements “red” and “red”. You want to remove “red” from the list. After the first “red” is removed, i becomes 1 and the list becomes {“red”}. i < list.size() is false. So the loop ends. The correct code should be

for (int i = 0; i < list.size(); i++) {

 if (list.remove(element))

 i--;

}

32.
The ArrayList class has two overloaded remove method remove(Object) and remove(int index). The latter is invoked for list.remove(1) to remove the element in the list at index 1.

33.
default visibility modifier.

34. protected.

35.
If the question marks are replaced by blanks, can class B be compiled? Yes.
If the question marks are replaced by private, can class B be compiled? No.

If the question marks are replaced by protected, can class B be compiled? Yes.

36.
If the question marks are replaced by blanks, can class B be compiled? No.

If the question marks are replaced by private, can class B be compiled? No.

If the question marks are replaced by protected, can class B be compiled? Yes.

37.
Use the final keyword.

38.
Indicate true or false for the following statements:

1.
True.

2.
False. (But yes in a subclass that extends the class where the protected datum is defined.)

3.
True.

4.
A final class can have instances.

Answer: True

5.
A final class can be extended.

Answer: False

6.
A final method can be overridden.

Answer: False

7.
You can always successfully cast a subclass to a superclass.

Answer: True

8.
You can always successfully cast a superclass to a subclass.

Answer: False

