Chapter 13 Graphics
1.
The y coordinate should increase and the x coordinate should remain unchanged.

2. Whenever a component (e.g., a button, a label, a panel) is displayed, the JVM automatically creates a Graphics object for the component on the native platform and passes this object to invoke the paintComponent method to display the drawings.
3.
The paintComponent() method is defined in the Component class. The Java runtime system invokes it to paint things on a Swing GUI component. This method cannot be invoked by the system or by the programmer. The system automatically invokes it whenever the viewing area changes. The programmer invokes it through invoking the repaint() method. The programmer should never directly invoke the paintComponent() method.

4.
The paintComponent() method is protected, because (1) this method is always invoked by the JVM, not by a client program; (2) the client program need to override it in a subclass.

If it is changed to public, it is OK, but not necessary, because the protected modifier is sufficient.

It cannot be changed to private, because the visibility cannot be weakened.

super.paintComponent(g) invokes the superclass’s paintComponent method. In Line 12 in Listing 12.2, it causes the text of the label to be painted first. Before this text is displayed, the JLabel’s paintComponent(g) method actually invokes super.paintComponent(g) to clear the viewing area. In Line 20 in Listing 12.3, it causes the viewing area to be cleared.

5.
Yes. You should declare a custom canvas by subclassing JPanel rather than subclassing JLabel or JButton, because labels are designed for the purpose to display a label or and buttons are for showing a push button.
6.
See the Sections 13.4.
7.
Draw a thick line from (10, 10) to (70, 30). You must draw several lines next to each other to create the effect of one thick line.

Answer:
for (int i = 0; i < 10; i++)

 g.drawLine(10, 10 + i, 70, 30 + i);

8.
Draw/fill a rectangle of width 100 and height 50 with the upper-left corner at (10, 10).

Answer:
g.drawRect(10, 10, 100, 50);

g.fillRect(10, 10, 100, 50);

9.
Draw/fill a rounded rectangle with width 100, height 200, corner horizontal diameter 40, and corner vertical diameter 20.

Answer:
g.drawRoundRect(10, 10, 100, 200, 40, 20);

g.fillRoundRect(10, 10, 100, 200, 40, 20);

10.
Draw/fill a circle with radius 30.

Answer:
g.drawOval(10, 10, 60, 60);

g.fillOval(10, 10, 60, 60);

11.
Draw an oval with width 50 and height 100.

Answer:
g.drawOval(10, 10 50, 100);

g.fillOval(10, 10 50, 100);

12.
The default width and height for a JPanel is 0. You will see nothing if a JPanel component with a default 0 width and height is placed in a FlowLayout container. Therefore, it is placed in a container with a GridLayout manager. It is a good practice to override getPreferredSize() in a subclass of JPanel to specify a preferred size,
13.
You can use the setColor(Color) to set a color in the graphics context and use the setFont(Font) method to set a font in the graphics context.

14.
See the Section 13.5.

15.
Draw the upper half of a circle with radius 50.

Answer:
g.drawArc(10, 10, 100, 100, 0, 180);

16.
Fill the lower half of a circle with radius 50 using red color.

Answer:
g.setColor(Color.RED);

g.fillArc(10, 10, 100, 100, 180, 0);

17.
Draw a polygon connecting the following points: (20, 40), (30, 50), (40, 90), (90, 10), (10, 30).

Answer:
int x[] = {20, 30, 40, 90, 10};

int y[] = {40, 50, 90, 10, 30};

g.drawPolygon(x, y, x.length);

g.fillPolygon(x, y, x.length);

18. Polygon polygon = new Polygon();

polygon.addPoint(20, 40);

polygon.addPoint(30, 50);

polygon.addPoint(40, 90);

polygon.addPoint(90, 10);

polygon.addPoint(10, 30);

g.setColor(Color.RED);

g.fillPolygon(polygon);

19.
First obtain the FontMetrics for a font used in the Graphics context using g.getFontMetrics() or g.getFontMetrics(Font). You can then use the FontMetrics’s getAscent(), getDescent(), getLeading(), getHeight() methods to obtain the font’s ascent, descent, leading, and height.
20.
Use getWidth(String) to obtain the string width for the font.
21.
When you create a MessagePanel, its paintComponent method is invoked. Since message is null, invoking g.drawString(message, xCoordinate, yCoordinate) causes a NullPointerException.

22.
Two errors: (1) constructor TestDrawMessage cannot have void. (2) PaintComponent should be paintComponent.

23.
Use imageIcon.getImage().

24. Use new ImageIcon(image).

25.
The drawImage(...) method displays the image on the viewing area.

26.
An image displayed on a label is non-stretchable, but an image displayed on a panel is stretchable.

27. ImageIcon is in the javax.swing package, but Image is in the java.awt package.

