Chapter 20 Recursion

1. A recursive method is the one that calls itself. An infinite recursion is the one that never stops.

2. six times. (base case factorial(0))

3. (a) Sum is 15 (5 + 4 + 3 + 2 + 1 = 15)

(b) 7654321

4.
f(n) = 2 if n = 1

f(n) = 2 * 2^(n-1) for (n > 1)

5.
f(n) = x if n = 1

f(n) = x * x^(n-1) for (n > 1)

6.
f(n) = 1 if n = 1

f(n) = f(n-1) + n for (n > 1)

7. (a) The output is 5 4 3 2 1

(b) The output is 1 2 3 4 5

8. (a) n is double. There is no guarantee that n != 0 will be eventually false.

(b) Infinite recursion due to new Test() inside the constructor Test().

9. 25 times (Why?

number of time fib is invoked in fib(0) =

1

number of time fib is invoked in fib(1) =

1

number of time fib is invoked in fib(2) =

1+ number of time fib is invoked in fib(1)+number of time fib is invoked in fib(2) =1+1+1=3
number of time fib is invoked in fib(3) =

1+ number of time fib is invoked in fib(1)+number of time fib is invoked in fib(2) = 1+1+3=5

number of time fib is invoked in fib(4) =

1+ number of time fib is invoked in fib(2)+number of time fib is invoked in fib(3) = 1+3+5=9
number of time fib is invoked in fib(5) =

1+ number of time fib is invoked in fib(3)+number of time fib is invoked in fib(4) = 1+5+9=15
number of time fib is invoked in fib(6) =

1+ number of time fib is invoked in fib(4)+number of time fib is invoked in fib(5) = 1+9+15=25
10.
One or more base cases (the simplest case) are used to stop recursion. Every recursive call reduces the original problem, bringing it increasingly close to a base case until it becomes that case.

11.
The base cases are (1) s.length() <= 1 and (2) s.charAt(0) != s.charAt(s.length – 1)

When invoking isPalindrome("abdxcxdba"), the isPalindrome method is called 5 times.

12.
Omitted

13.
Omitted

14.
Omitted

15. an overloaded method with additional parameters.

16.
The base case for the getSize(File d) method is that d is a file.

17.
The program gets all files and directories under the directory d using d.listFiles(), which returns an array of File objects under the directory.

18.
4 times for the directories and 4 * 4 time for all the files. So, the total is 20.

19.
2^5 – 1

20.
The midpoint between p1 and p2 is ((p1.x + p2.x)/2, (p1.y + p2.y)/2).
21.
The base case for the displayTriangles method is order == 0.

22.
The displayTriangles method is invoked one time for order 1, 4 times for order 1, 1 + 3 * 3 times for order 2, and 1 + 3^n for order n.

23.

· Any recursive methods can be converted into a non-recursive method. (TRUE)

· Recursive method usually takes more time and memory to execute than non-recursive methods. (TRUE)

· Recursive methods are always simpler than non-recursive methods. (FALSE)

· There is always a condition statement in a recursive method to check whether a base case is reached. (TRUE)

24.
When a method is invoked, its contents are placed into a stack. If a method is recursively invoked, it is possible that the stack space is exhausted. This causes stack overflow.

25.
The isPalindrome method in Listing 20.4, sort method in Listing 20.5, and binarySearch method in Listing 20.6 are tail-recursive.

26.

 /** Return the Fibonacci number for the specified index */

 public static long fib(long index) {
 return fib(index, 1, 0);
 }
 /** Auxiliary tail-recursive method for fib */

 private static int fib(long index, int next, int result) {
 if (index == 0)
 return result;
 else
 return fib(index - 1, next + result, next);
 }

