Chapter 21 Generics

1. (a) will compile fine, but (b) has a compilation error on Line 3, because dates is declared as a list of Date objects. You cannot assign a string to the list.

2. casting is needed in (a), but no casting is necessary in (b) with the generic type ArrayList<Date>.

3. One important benefit is improving reliability and robustness. Potential errors can be detected by the compiler.

package java.lang;

public interface Comparable<E> {

 public int compareTo(E o)

}
4. No.

5. Yes.

6. To declare a generic type for a class, place the generic type after the class name, such as GenericStack<E>. To declare a generic type for a method, place the generic type for the method return type, such as <E> void max(E o1, E o2).

7. To declare a generic method, you place the generic type <E> immediately after the keyword static in the method. A generic method can be invoked just like a regular method. The compiler automatically discovers the actual type.

8. Bounded generic type such as <E extends AClass> specifies that a generic type must be a subclass of AClass.

9. No, because list is of type int[], but the sort method requires E[], where E is an object type.

10. No, because list is still of type int[], but the sort method requires E[], where E is an object type.

11. When you use generic type without specifying an actual parameter, it is called a raw type. A raw type is unsafe, because some errors cannot be detected by the compiler. The raw type is allowed in Java for backward compatibility.

12. ArrayList list = new ArrayList();

13. GenericStack is roughly equivalent to GenericStack<Object>, but they are not the same. GenericStack<Object> is a generic instantiation, but GenericStack is a raw type.

14. ? is unbounded wildcard
? extends T is bounded wildcard

? super T is lower bounded wildcard

15. The program cannot be compiled, because the element type in stack1 is GenericStack<String>, but the element type is stack2 is GenericStack<Object>. add(stack1, stack2) cannot be matched.

16. The program can be compiled and run fine.

17. Generic type information is used by the compiler to check whether the type is used safely. Afterwards the type information is erased. The type information is not available at runtime. This approach enables the generic code to be backward-compatible with the legacy code that uses raw types.
18. No. Only ArrayList is loaded.
19. No, because the type information is not available at runtime.

20. Since all instances of a generic class have the same runtime class, the static variables and methods of a generic class is shared by all its instances. Therefore, it is illegal to refer a generic type parameter for a class in a static method or initializer.
21. No. The JVM have to check the exception thrown from the try clause to see if it matches the type specified in a catch clause. This is impossible, because the type information is not present at runtime.

22. Because these methods cannot be implemented in the GenericMatric class.

23. In the IntegerMatrix class, the add method is implemented by adding the two numbers using the + operator. The multiply method is implemented by multiplying the two numbers using the * operator. The zero method is implemented to return 0.

24. In the RationalMatrix class, the add method is implemented by adding the two numbers using the add method in the Rational class. The multiply method is implemented by multiplying the two numbers using the multiply method in the Rational class. The zero method is implemented to return new Rational(0, 1).

25. You have to define it using:

 public static <T> void printResult(

 T[][] m1, T[][] m2, T[][] m3, char op)

