Chapter 22 Lists, Stacks, Queues, and Priority Queues
A data structure is a collection of data organized in some fashion.

In object-oriented thinking, a data structure is an object that stores other objects, referred to as data or elements. So some people refer a data structure as a container object or a collection object. To define a data structure is essentially to declare a class.

2.
The Java Collections Framework defines the Java API for handling common data structures tasks in Java. It defines classes and interfaces for storing and manipulating data in sets, lists, and maps.

A convenience class is an abstract class that partially implements an interface. The Java Collections Framework defines interfaces, convenience abstract classes, and concrete classes.

3. Yes. The concrete classes of Set, List, and Map implements the clone() method in the Cloneable interface.

4. addAll(Collection c).

5. If a method has no meaning in the subclass, you can implement it in the subclass to throw java.lang.UnsupportedOperationException, a subclass of RuntimeException. This is a good design that you can use in your project. If a method has no meaning in the subclass, you can implement it as follows:

6. The Collection interface extends the Iterable interface. You can obtain an iterator from a collection using the iterator() method.

7. Use the next() method.

8. Yes.

9. No. They are implicitly used in a for-each loop.
10. Use the add or remove method to add or remove elements from a list. Use the listIterator() to obtain an iterator. This iterator allows you to traverse the list bi-directional.

11. list2 is not changed by all these methods.

What is list1 and list2 after executing set1.addAll(list2);

 list1 is [red, yellow, green, red, yellow, blue]

What is list1 and list2 after executing list1.add(list2);

 list1 is [red, yellow, green, [red, yellow, blue]]

What is list1 and list2 after executing list1.removeAll(list2);

 list1 is [green]

What is list1 and list2 after executing list1.remove(list2);

 list1 is [red, yellow, green]

What is list1 and list2 after executing list1.retainAll(list2);

 list1 is [red, yellow]

What is list1 after executing list1.clear();

 list1 is empty

12. ArrayList and LinkedList can be operated similarly. The critical differences between them are their internal implementation, which impacts the performance. ArrayList is efficient for retrieving elements, and for adding and removing elements from the end of the list. LinkedList is efficient for adding and removing elements anywhere in the list.

13. All the methods in ArrayList are also in LinkedList except the trim method. The methods getFirst, getLast, addFirst, addLast are in LinkedList, but not in ArrayList.

14. A simple way to create a list from an array of objects is to use

new ArrayList(Arrays.asList(arrayObject)) or new LinkedList(Arrays.asList(arrayObject)).
15.

The Comparable interface contains the compareTo method and Comparator interface contains the compare method and equals method. Normally, if the objects of a class have natural order (e.g., String, Date), let the class implement the Comparable interface. The Comparator interface is more flexible in the sense that it enables you to define a new class that contains the compare(Object, Object) method to compare two objects of other classes.

The Comparable interface is in the java.lang package, and the Comparator interface is in the java.util package.

16. Since The equals method is also defined in the Object class. Therefore, you will not get a compilation error if you don’t implement the equals method in your custom comparator class. However, in some cases implementing this method may improve performance by allowing programs to determine that two distinct comparators impose the same order.

17. Yes.

18. The methods for lists are: sort, binarySearch, reverse, shuffle

The methods for collections are: max, min, disjoint, frequency

19.

[blue, green, red, yellow]

[white, black, green, blue]

false

true

2

20. You can use Collections.sort(list) to sort an ArrayList or a LinkedList and use Arrays.sort(Object[]) to sort an array of strings.

21. You can use Collections.binary(list, key) to perform binary search for an ArrayList or a LinkedList and use Arrays.binary(Object[], key) to sort an array of strings.

22. Collections.max(Arrays.asList(arrayObject))

23. The MutilpleBallApp program will work if ArrayList is replaced by LinkedList. The ArrayList is a better choice than the LinkedList for this program because it is more efficient to adding and removing elements at the end of the list.

24. If you change the MutilpleBallApp program to remove the first ball in the list when the –1 button is clicked, you should use LinkedList to store the balls in this program.

25. Change line 133 to

radius = Math.random*11 + 10;

26. Vector is the same as ArrayList except that, except that Vector contains the synchronized methods for accessing and modifying the vector. Since Vector implements List, you can use the methods in List to add, remove elements from a vector, and use the size() method to find the size of a vector. To create a vector, use either its constructors.

27. Stack is a subclass of Vector. The Stack class represents a last-in-first-out stack of objects. The elements are accessed only from the top of the stack. You can retrieve, insert, or remove an element from the top of the stack. To add a new element to a stack, use the push method. To remove an element from the top of the stack, use the method pop. To find a stack size, use the size() method.

28. Yes, because these classes are subtypes of the Collection interface.

29. java.util.Queue is a subinterface of java.util.Collection, and LinkedList implements Queue.

30. Use the constructors of PriorityQueue to create priority queues. By default, the elements in a priority queue are ordered in their natural order using the compareTo method in the Comparable interface. The element with the least value is assigned the highest priority in PriorityQueue.
31. new PriorityQueue(initialCapacity, Collections.reverseOrder()).

32. Yes.

33. Omitted

