Chapter 23 Sets and Maps
1. The Set is an interface. To create an instance of Set, you need to use HashSet or TreeSet. To insert an element to a set, use the add method. To remove an element from a set, use the remove method. To find the size of a set, use the size() method.

2. If two objects o1 and o2 are equal, o1.equals(o2) is true and o1.hashCode() == o1.hashCode() is true.

3. HashSet is unsorted, but TreeSet is sorted. HashSet is more efficient than TreeSet if you don’t want the elements in a set to be sorted. If you create a TreeSet using its default constructor, the compareTo method is used to compare the elements in the set, assuming that the class of the elements implements the Comparable interface. To use a comparator, you have to use the constructor TreeSet(Comparator comparator) to create a sorted set that uses the compare method in the comparator to order the elements in the set. A runtime error would occur if you add an element that cannot be compared with the existing elements in the tree set?

4. To traverse a set, use the iterator method to obtain an iterator. You can then traverse the set through the iterator. Using an iterator, you can traverse only sequentially from the beginning to the end.

5. To sort the elements in a set using the Comparable interface, there are two ways: (1) create a TreeSet using new TreeSet(), (2) create a TreeSet from a set using new TreeSet(set). To sort the elements in a set using the Comparator interface, create a TreeSet using new TreeSet(Comparator), then add the elements to the tree set.

6. set2 is not changed by all these methods. (If you use HashSet, the order of the elements in the set is unpredicatable.)

What is set1 and set2 after executing set1.addAll(set2);

 set1 is [green, red, blue, yellow]

What is set1 and set2 after executing set1.add(set2);

 set1 is [green, red, yellow, [red, blue, yellow]]

 Note set2 is added as a whole element into set1.

What is set1 and set2 after executing set1.removeAll(set2);

 set1 is [green]

What is set1 and set2 after executing set1.remove(set2);

 set1 is [green, red, yellow]

What is set1 and set2 after executing set1.retainAll(set2);

 set1 is [red, yellow]

What is set1 after executing set1.clear();

7.
set1 is [New York, Atlanta]
set2 is [New York, Atlanta]
set3 is [New York]
 8.

[New York, Atlanta]
[New York]

9. Suppose you need to write a program that stores non-duplicate elements, you should use a HashSet.
10. Suppose you need to write a program that stores non-duplicate elements in the order of insertion, you should use a LinkedHashSet.
11. Suppose you need to write a program that stores non-duplicate elements in the increasing order of the element value, you should use a TreeSet.
12. Suppose you need to write a program that stores a fixed number of the elements (possibly duplicate), you should use an array.
13. Suppose you need to write a program that stores the elements in a list with frequent operations to add and insert elements at the end of the list, you should use an ArrayList.

14. Suppose you need to write a program that stores the elements in a list with frequent operations to add and insert elements at the beginning of the list, you should use an LinkedList.
15. The program will work.

16. The program will work.

17. Map is an interface. To create an instance of Map, you need to use the HashMap class or the TreeMap class. The HashMap and TreeMap have various constructors that you can use to create a HashMap or a TreeMap. You can use the put method to add an entry to a map, and the remove method to remove an entry with the specified key from the map. Use the size method to find the size of a map.

18. The HashMap, LinkedHashMap, and TreeMap classes are three concrete implementations of the Map interface. The HashMap class is efficient for locating a value, inserting a mapping, and deleting a mapping. The entries in a HashMap are not ordered, but the entries in a LinkedHashMap can be retrieved in the order in which they were inserted into the map (known as the insertion order), or the order in which they were last accessed, from least recently accessed to most recently (access order). The TreeMap class, implementing SortedMap, is efficient for traversing the keys in a sorted order.

19.

(1) {123=Steve Yao, 111=George Smith, 222=Steve Yao}

(2) {111=George Smith, 123=Steve Yao, 222=Steve Yao}

20.
No. A concrete type must of an object type.

21. Yes. It will work.

22. No. You cannot iterate on keys in a map in Java.

23. The singleton set is immutable. You cannot add an element into the singleton set.

24. The list created from the unmodifiableList method is immutable is an unmodifiable view of the list. You cannot modify the list through this view.

