Chapter 26 Implementing Lists, Stacks, Queues, and Priority Queues
1.
Yes. Because MyList extends Iterable.

2.
No. Because MyAbstractList is abstract.

3.
The methods add(E), isEmpty(), size(), remove(E) are overridden in AbstractList.

4.
For generic programming.

5.
Two limitations: (1) once an array is created, its size cannot be altered; (2) it does not provide adequate support for insertion and deletion operations.

6.
MyArrayList is implemented using an array and an array is a fixed-size data structure. But MyArrayList is considered as a dynamic data structure, because its storage size changes behind the scene and hidden from the user.

7.
After line 1, list’s length is 16. After line 2, list’s length is 16. After line 3, list’s length is 1. After line 4, list’s length is 3. After line 5, list’s length is 3. After line 6, list’s length is 7.
8.

If

 for (int i = 0; i < objects.length; i++)

 add(objects[i]);

are replaced by

super(objects);

When constructing an ArrayList using new ArrayList(objects), the super class’ constructor is invoked first to add element in objects to data. However, data has not been initialized yet. data will be initialized after the body of the superclass’ constructor is executed. So you will get a NullPointerException when attempting to add an element to data. See Section 10.15, “Initialization Block,” for reference.

If

 for (int i = 0; i < objects.length; i++)

 add(objects[i]);

are replaced by

data = objects;

size = objects.length;

Then data and objects refer to the same array. This is a security hole. You may change ArrayList by directing changing the array elements through objects.

9.

(Hint: To find the bug, perform trimToSize() on an empty list, then add a new element to the list.)

When an empty array list is trimmed, its size becomes 0. If you create a new array by doubling its size, the new array size is still 0. Adding a new element now would cause an ArrayIndexOutOfBounds exception.

10. Yes.

(Hint: To find the bug, perform trimToSize() on an empty
11.
Both MyArrayList and MyLinkedList are used to store a list of objects. Why do we need two? MyLinkedList is more efficient for deletion and insertion at the beginning of the list. MyArrayList is more efficient for all other operations.
12. Omitted
13. O(1)

14.
If the number of elements is fixed in the program, use array is more efficient. If the number of elements changes in the program, you may use MyArrayList or MyLinkedList.

15.
If you have to add or delete the elements anywhere in a list, use MyLinkedList. If most of operations on a list involve retrieving an element at a given index, use MyArrayList.

16.
Using inheritance: You can declare the stack class by extending the array list class, and the queue class by extending the linked list class. Using composition: You can declare an array list as a data field in the stack class, and a linked list as a data field in the queue class. Both designs are fine, but using composition is better because it enables you to declare a complete new stack class and queue class without inheriting the unnecessary and inappropriate methods from the array list and linked list.

17. The time complexity for enqueue will be O(1) and for dequeue will be O(n).

18. line 5 will be wrong, because GenericStack is not a subtype of MyList.

19. In a priority queue, elements are assigned with priorities. When accessing elements, the element with the highest priority is removed first.
20. For enqueue and dequeue in a priority queue, the complexity is O(logn). For getSize(), the complexity is O(1).
21. lines 1 and 2 are wrong, because Object and Number don’t implement Comparable.

