Chapter 34 Java Database Programming

1. A superkey is an attribute or a set of attributes that uniquely identifies the relation. That is, no two tuples have the same values on the superkey. A key K is a minimal superkey, meaning that any proper subset of K is not a superkey. A relation can have several keys. In this case, each of the keys is called a candidate key. The primary key is one of the candidate keys designated by the database designer. The primary key is often used to identify tuples in a relation. You may specify a primary in the create table statement using the primary key clause.

2. A set of attributes FK is a foreign key in a relation R that references relation T if it satisfies the following two rules:

· The attributes in FK have the same domain as the primary key in T.

· A non-null value on FK in R must match a primary key value in T.

You may specify a foreign key in the create table statement using the foreign key clause.

3. A relation can have only one primary key, but may have multiple foreign keys.

4. No.

5. No, but they must have the same domain.

6. Yes.

7. See http://www.cs.armstrong.edu/liang/intro6e/supplement/createsampletables_mysql.sql
 8.

 select * from Course where subjectId = 'CSCI' and numOfCredits >= 4

 9.

 select * from Student where lastName like '%S%S%'

 10.

select * from Student where birthdate is null

 11.

select distinct firstName, lastName from Student, Enrollment, Course where Student.ssn = Enrollment.ssn and Course.courseId = Enrollment.courseId

 12.

select subjectId, count(*) from Course group by subjectId

 13.

select Student.ssn, 50 * sum(numOfCredits) from Student, Enrollment, Course where Student.ssn = Enrollment.ssn and Course.courseId = Enrollment.courseId group by Student.ssn

 14.

(1) platform independence, i.e., your Java program can run on any platform and access any relational database. (2) Java has an extensive set of classes and interfaces in the API that you can use to develop database applications and applets productively and efficiently.

15. A JDBC application loads an appropriate driver using the Driver interface, connects to the database using the Connection interface, creates and executes SQL statements using the Statement interface, and processes the result using the ResultSet interface if the statements return results.

16. Use the Class.for(driverName) method to load the driver with its full name. The driver class for MySQL, Access, and Oracle are com.mysql.jdbc.Driver, sun.jdbc.odbc.JdbcOdbcDriver, oracle.jdbc.driver.OracleDriver, respectively.

17. To create a JDBC connection, use DriverManager.getConnection(url). The URLs for MySQL, Access, and Oracle are jdbc:mysql://liang.armstrong.edu/test jdbc:odbc:exampleMDBDataSource", jdbc:oracle:thin:@liang.armstrong.edu:1521:ora9i.

18. To create an instance of Statement, use connection.createStatement(). To execute a statement, use the methods executeQuery(…) and executeUpdate(…). executeQuery(…) returns a result set, but executeUpdate(…) does not return a result set.

19. To retrieve values in a ResultSet, use next() to move the cursor to the next row and use the getXxx(number) or getXxx(columnName) method to retrieve fields from the current row.

20. JDBC automatically commits a transaction. You can set autoCommit to false using setAutoCommit(false) on a Connection object.

21. PreparedStatement is a subinterface of Statement. To create a PreparedStatement, use connection.prepareStatement(String sql), where sql is a prepared statement with parameters denoted using question marks. To execute a PreparedStatement, first set parameter values using the setX(int parameterIndex, X value) method, then invoke execute() method.

22. Since the prepared statements are precompiled, they are efficient for repeated executions.
23. CallableStatement is a subinterface of PreparedStatement. To create a CallableStatement, use

CallableStatement callableStatement = connection.prepareCall(

 "{call sampleProcedure(?, ?, ?)}");

Or

CallableStatement callableStatement = connection.prepareCall(

 "{? = call sampleFunction(?, ?, ?)}");

To execute a CallableStatement, first IN and IN OUT parameter values using the setX(int parameterIndex, X value) method, and register OUT parameters using the registerOutParameter method. You may use execute() or executeUpdate() to execute the procedure depending on the type of SQL statement.

24. The DatabaseMetaData interface contains the methods for obtaining database-wide information.

The general information includes the URL, username, product name, product version, driver name, driver version, available functions, available data types, and so on. The methods for general information usually return a string, an integer, except that the method for retrieving available data types returns a ResultSet. Most methods of this type don't have parameters.

Information on database capabilities includes such matters as whether the database supports the GROUP BY operator, the ALTER TABLE command with add column option, and entry-level or full ANSI92 SQL grammar. The methods for finding database capabilities return a boolean value indicating whether the database possesses a certain capability. Most of methods of this type don't have parameters and are named with prefix supports. Table 13.3 gives some of.

The methods for getting database objects return lists of information in ResultSets. You can use the normal ResultSet methods, such as getString and getInt, to retrieve data from these ResultSets. If a given form of metadata is not available, these methods should throw a SQLException.

To create an instance of DatabaseMetaData, use the getDatabaseMetaData() method from a Connection object.

25. The ResultSetMetaData interface describes information pertaining to the result set. A ResultSetMetaData object can be used to find out about the types and properties of the columns in a ResultSet. The methods in ResultSetMetaData have a single int parameter representing the column except that the getColumnCount method has no parameters. All these methods return int, boolean, or String. To create an instance of ResultSetMetaData, use getResultSetMetaData from an instance of ResultSet.

26. To find the number of columns in a result set, first create an instance of ResultSetMetaData using the getMetaData() method on a ResultSet. The use getColumnCount() to return the column count and use getColumnName(int) to return the column name.

