Chapter 49 Java 2D
1. The Graphics object is automatically created when a GUI component is displayed. This object is actually an instance of Graphics2D. To obtain a reference to the object as Graphics2D, simply cast it to Graphics2D.

2. The Shape interface is a base interface for defining geometrical shapes. It provides the contains method to test if a point or a rectangle is inside a shape, and the intersects method to test if the shape overlaps with a rectangle.

3. To create a Line2D object, you can use Line2D.Float(x1, y1, x2, y2) or Line2D.Double(x1, y1, x2, y2).

4. Line2D.Double and Line2D.Float are inner classes of Line2D and are also subclasses of Line2D.
5. To render a Shape object, invoke Graphics2D’s draw or fill methods as in g2d.draw(shape) or g2d.fill(shape).

6. Point2D is a class that defines a point for Java 2D. Point2D.Double, Point2D.Float, and Point are subclasses of Point2D. Point represents a point with integer coordinates. Point2D.Double and Point2D.Float are also inner classes of Point2D.
7. Rectangle, Rectangle2D.Double, and Rectangle2D.Float are subclasses of Rectangle2D. Rectangle2D.Double and Rectangle2D.Float are also subclasses of Rectangle2D. Rectangle was defined in JDK 1.1 and now is defined as a subclass of Rectangle2D.
8. Rendering shapes using the draw(Shape) and fill(Shape) methods separates the rendering from modeling, and enables you to draw advanced and complex two-dimensional graphics.
9. Its upper-left corner is displayed at (12, 13).
10. The rectangle is rotated clockwise 36 degree at the origin (0, 0).
11. Its upper-left corner is displayed at (2, 3) with width 40 and height 50.
12. You can specify the width of the line, how the line ends (called end caps), how lines join together (called line joins), and whether the line is dashed in a Stroke object. You can create a Stroke object using the BasicStroke class. You can set a stroke using the setStroke(Stroke) method in the Graphics2D class.

13. You can use GradientPaint or TexturePaint classes to create a Paint object and use the setPaint(Paint) method to set a paint in Graphics2D.

14. GradientPaint defines a varying color, specified by two points and two colors. As the location moves from the first point to the second, the paint changes gradually from the first color to the second. A GradientPaint can cyclic or acyclic. A cyclic paint repeats the same pattern periodically.
15. TexturePaint defines an image to fill a shape or characters. The parameter image is specified as a BufferedImage. The anchor parameter specifies a rectangle on which the image is anchored. The image is repeated around the anchor rectangle.
16. You can use QuadCurve2D.Double or QuadCurve2D.Float to create a quadratic curve. A quadratic curve is mathematically defined as a quadratic polynomial. To create a QuadCurve2D.Double, use the following constructor:

QuadCurve2D.Double(double x1, double y1,

 double ctrlx, double ctrly, double x2, double y2)

You can use CubicCurve2D.Double or CubicCurve2D.Float to create a cubic curve. A cubic curve is mathematically defined as a cubic polynomial. To create a CubicCurve2D.Double, use the following constructor:

CubicCurve2D.Double(double x1, double y1, double ctrlx1,

 double ctrly1, double ctrlx2, double ctrly2, double x2, double y2)

17. The Path2D class models an arbitrary geometric path. Path2D.Double and Path 2D.Float are two concrete subclasses of Path 2D. You can use the moveTo(x, y) method to move the pen to the new position at point (x, y), use the lineTo(x, y) to add a point (x, y) to the path by drawing a straight line from the current point to this new point, use the quadTo(ctrlx, ctrly, x, y) method to draw a quadratic curve from the current location to (x, y) using (ctrlx, ctrly) as the control point, use the curveTo(ctrlx1, ctrly1, ctrlx2, ctrly2, x, y) method to draw a cubic curve from the current location to (x, y) using (ctrlx1, ctrly1) and (ctrlx2, ctrly2) as the control points, and use the closePath() method to connect the current point with the point in the last moveTo method.

18. Java 2D uses the winding rules to define the interior points. There are two winding rules: WIND_EVEN_ODD and WIND_NON_ZERO.
The WIND_EVEN_ODD rule defines a point as inside a path if a ray from the point towards infinity in an arbitrary direction intersects the path an odd number of times.
With the WIND_NON_ZERO rule, the direction of the path is taken into consideration. A point is inside a path if a ray from the point towards infinity in an arbitrary direction intersects the path an unequal number of opposite directions.
19. You can use new Area(Shape) to create an Area from a Shape object.

Area implements Shape and provides the methods add, subtract, intersect, and exclusiveOr to perform set-theoretic operations union, difference, intersection, and symmetric difference. These operations perform on the shapes stored in the areas. The union of two areas consists of all points that are in either area. The difference of two areas consists of the points that are in the first area, but not in the second area. The intersection of two areas consists of all points that are in both areas. The symmetric difference consists of the points that are in exactly one of the two areas.

