
© Copyright Y. Daniel Liang, 2005

1

Supplement: Java Logger

For Introduction to Java Programming
By Y. Daniel Liang

1 Introduction

Java provides the logging API to facilitate logging
information from your program to a file and/or to the
console. This supplement introduces how to use the Java
logging API to write logging messages from your program to a
file and/or to the console.

2 Obtaining/Creating a Logger Object

Before writing messages to a log, you need to first obtain a
Logger object using the following statement:

java.util.logging.Logger logger =
 java.util.logging.Logger.getGlobal();

This statement obtains a Logger object if it is already
created for your application or creates a new Logger object
if it is created for your application.

3 Setting Log Levels

Log messages are categorized into different levels (severe,
warning, info, config, fine, finer, and finest) to control
the severity of messages. These levels are defined as
constants in the java.util.logging.Level class.

Level.SEVERE: In general SEVERE messages should describe
events that are of considerable importance and which will
prevent normal program execution.
Level.WARNING: In general WARNING messages should describe
events that will be of interest to end users or system
managers, or which indicate potential problems.

Level.INFO: Typically INFO messages will be written to the
console or its equivalent. So the INFO level should only be
used for reasonably significant messages that will make
sense to end users and system administrators.

Level.CONFIG: CONFIG messages are intended to provide a
variety of static configuration information, to assist in
debugging problems that may be associated with particular
configurations. For example, CONFIG message might include
the CPU type, the graphics depth, the GUI look-and-feel,
etc.

Level.FINE: In general the FINE level should be used for
information that will be broadly interesting to developers

© Copyright Y. Daniel Liang, 2005

2

who do not have a specialized interest in the specific
subsystem.

Level.FINER: FINER indicates a fairly detailed tracing
message.

Level.FINEST: FINEST indicates a highly detailed tracing
message.

All of FINE, FINER, and FINEST are intended for relatively
detailed tracing. The exact meaning of the three levels will
vary between subsystems, but in general, FINEST should be
used for the most voluminous detailed output, FINER for
somewhat less detailed output, and FINE for the lowest
volume (and most important) messages.

You can use the setLevel method in the Logger class to set
the log level that specifies which message levels will be
logged by this logger. Message levels lower than the
specified level will not be logged. The levels are specified
in this order: SEVERE, WARNING, INFO, CONFIG, FINE, FINER,
and FINEST.

By default, the level in a Logger object is set to
LEVEL.INFO. You can turn off logging by setting the level to
Level.OFF as follows:

logger.setLevel(Level.OFF);

4 Writing Log to a File

To write log message to a file, you need associate a file to
the logger. Here are the statements to create a file handler
and add it to a logger.

FileHandler handler =
 new FileHandler("c:\\temp.log");
logger.add(handler);

You can associate multiple files to a logger. You can also
associate the console to the logger.

Note
The log message is automatically displayed to the console
regardless whether the message is written to a file. Only
the messages with level SEVERE, WARNING, and INFO are
displayed to the console.

5 Writing Log Messages

You can use the following methods in the Logger class to
write log messages.

severe(String msg): Writing a SEVERE message.

© Copyright Y. Daniel Liang, 2005

3

warning(String msg): Writing a WARNING message.
info(String msg): Writing an INFO message.
config(String msg): Writing a CONFIG message.
fine(String msg): Writing a FINE message.
finer(String msg): Writing a FINER message.
info(String msg): Writing an INFO message.
finest(String msg): Writing a FINEST message.

6 A Complete Example

We now give a complete example to demonstrate the use of
Java logging.

You can use the following methods in the Logger class to
write log messages.

import java.util.logging.FileHandler;
import java.util.logging.Level;
import java.util.logging.Logger;

public class LoggingDemo {
 public static void main(String[] args) throws Exception {
 // Obtain the logger object
 Logger logger = Logger.getGlobal();

 // Create a file handler
 FileHandler handler = new FileHandler("c:\\temp.log");
 // Add the file handler to the logger
 logger.addHandler(handler);

 // Set logger level
 logger.setLevel(Level.FINEST);

 logger.severe("my severe message");
 logger.warning("my warning message");
 logger.info("my info message");
 logger.config("my config message");
 logger.fine("my fine message");
 logger.finer("my finer message");
 logger.finest("my finest message");
 }
}

When you run the program, the following output is displayed
on the console:

Mar 7, 2012 7:39:27 PM LoggingDemo main
SEVERE: my severe message
Mar 7, 2012 7:39:28 PM LoggingDemo main
WARNING: my warning message
Mar 7, 2012 7:39:28 PM LoggingDemo main
INFO: my info message

Since the log level is set at Level.FINEST, all log messages
were written the log file.

© Copyright Y. Daniel Liang, 2005

4

From now on, you can use Java logging to display debugging
messages. Before deploying your project, turn the logging
off by setting the level to Level.OFF.

