
© Copyright Y. Daniel Liang, 2005

1

Supplement: Java Profiler

For Introduction to Java Programming
By Y. Daniel Liang

1 Introduction

Java profiler is a tool for analyzing the performance of
Java programs. Using this tool, you can obtain the CPU time
used by the methods in the program and memory used by
objects. This tool is integrated with NetBeans. This
supplement introduces how to use Java profiler from
NetBeans.

NOTE: Assume that you know how to use NetBeans. For
information on creating projects and programs and running
programs on NetBeans, see Supplement II.B.

2 Calibrating Profiler

Before using profiler for the first time, you need to
calibrate the profiler to achieve accurate profiling
results. Calibration needs to be performed only once for the
Java platform used to run your program. Here are the steps
to perform calibration:

1. Choose Profile, Advanced Commands, Run Profiler
Calibration.

2. Select a Java platform, as shown in Figure 1, and
click OK.

Figure 1

You need to select a Java platform to perform calibration.

If you have multiple platforms, calibrate each at a time.
Calibration data for each Java platform will be used for
profiling programs running on the Java platform.

3 Profiling an Application

© Copyright Y. Daniel Liang, 2005

2

Listing 23.6 SetListPerformanceTest.java in the text gives a
program that shows the execution time of (1) testing whether
an element is in a hash set, linked hash set, tree set,
array list, and linked list, and (2) removing elements from
a hash set, linked hash set, tree set, array list, and
linked list. We will use this program as an example to
demonstrate how to use the profiler. Here are the steps to
profile this program.

1. Create a project for Java application.

2. Create a class named SetListPerformanceTest in the
project.

3. Copy and paste the code in Listing 23.6
SetListPerformanceTest.java for the class in NetBeans,
as shown in Figure 2.

Figure 2

The class SetListPerformanceTest is created in the project.

4. Right-click on SetListPerformanceTest.java in the
project to display a context menu and choose Profile
File, as shown in Figure 3.

© Copyright Y. Daniel Liang, 2005

3

Figure 3

Choose Profile File to start profiling the application.

5. A dialog box is displayed as shown in Figure 4. You
can choose the tasks for Monitor, CPU, or Memory. The
Monitor task monitors the application. The CPU task
tracks the CPU time used for each method in the
application. The Memory task tracks the memory usage
for each object in the application. Choose CPU and
Profile all classes in the Filter. Click Run to start
profiling. Click Live Results in the Profiling Results
pane to see the time spent on executing each method,
as shown in Figure 5.

© Copyright Y. Daniel Liang, 2005

4

Figure 4

The task dialog box enables you to choose a task for
profiling.

© Copyright Y. Daniel Liang, 2005

5

Figure 5

The execution time for each method in the application is
displayed in the result pane.

6. After profiling CPU task is completed, restart
profiling by choosing the Memory task, as shown in
Figure 6.

© Copyright Y. Daniel Liang, 2005

6

Figure 6

You can choose Memory to profile memory usage.

© Copyright Y. Daniel Liang, 2005

7

Figure 7

The Memory profiler tracks the memory usage.

7. Click Live Results in the Profiling Results window to
see the memory usage in the result pane. You can also
see the heap size and garbage collection in the VM
Telemetry Overview window, as shown in Figure 7.

