

© Copyright Y. Daniel Liang

Supplement I.A: Glossary

For Introduction to Java Programming
By Y. Daniel Liang

Chapter 1

 .class file The output of the Java compiler. A .class
file contains the byte code for the class.

 .java file The source code of a Java program. It may
contain one or more Java classes and interfaces. A
.java file can be created using a text editor or a Java
IDE such as NetBeans, Eclipse, and JBuilder.

 Application Program Interface (API) A set of classes
and interfaces that can be used to develop Java
programs.

 assembler A program that translates assembly-language
programs into machine code.

 assembly language A low-level programming language in
which a mnemonic is used to represent each of the
machine language instructions.

 binary numbers Numbers consists of 0’s and 1’s.
 bit A binary digit 0 and 1.
 block A sequence of statements enclosed in braces ({}).
 block comment Enclosed between /* and */ on one or

several lines in the source code.
 byte A unit of storage. Each byte consists of 8 bits.

The size of hard disk and memory is measured in bytes.
A megabyte is roughly a million bytes.

 bytecode The result of compiling Java source code.
Bytecode is machine-independent and can run on any
machine that has a Java running environment.

 Bytecode verifier A program in the JVM that checks
the validity of the bytecode and ensure that the
bytecode does not violate Java’s security restrictions.

 cable modem Uses the TV cable line maintained by the
cable company. A cable modem is as fast as a DSL.

 central processing unit (CPU) A small silicon
semiconductor chip with millions of transistors that
executes instructions.

 class loader When executing a Java program, the JVM
first loads the bytecode of the class to memory using a
program called the class loader. If your program uses
other classes, the class loader dynamically loads them
just before they are needed.

 comment Comments document what a program is and how it

© Copyright Y. Daniel Liang

is constructed. They are not programming statements and
are ignored by the compiler. In Java, comments are
preceded by two slashes (//) in a line or enclosed
between /* and */ in multiple lines.

 compiler A software program that translates source code
(e.g., Java source code) into a machine language
program.

 dot pitch The amount of space between pixels. The
smaller the dot pitch, the better the display.

 DSL (digital subscriber line) Uses a phone line and
can transfer data in a speed 20 times faster than a
regular modem.

 hardware The physical aspect of the computer that can
be seen.

 hexadecimal numbers Numbers with radix 16.
 high-level programming language Are English-like and

easy to learn and program.
 Integrated Development Environment (IDE) Software that

helps programmers write code efficiently. IDE tools
integrate editing, compiling, building, debugging, and
online help in one graphical user interface.

 interpreter Software for interpreting and running Java
bytecode.

 java command The command to invoke the interpreter to
run a Java program from the command line.

 javac command The command to invoke the compiler to
compile a Java source code program from the command
line.

 Java Development Toolkit (JDK) Defines the Java API
and contains a set of command-line utilities, such as
javac (compiler) and java (interpreter). With Java 2,
Sun renamed JDK 1.5 to Java 2 SDK v 1.5. SDK stands for
Software Development Toolkit.

 Java Virtual Machine (JVM) A machine that run Java
byte-code. It is called virtual because it is usually
implemented in software rather than in hardware.

 Just-in-Time compiler Capable of compiling each
bytecode once, and then reinvoking the compiled code
repeatedly when the bytecode is executed.

 keyword (or reserved word) A word defined as part of
Java language, which have a specific meaning to the
compiler and cannot be used for other purposes in the
program.

 line comment comments preceded by two slashes (//).
 machine language Is a set of primitive instructions

built into every computer. The instructions are in the

© Copyright Y. Daniel Liang

form of binary code, so you have to enter binary codes
for various instructions.

 main class A class that contains a main method.
 memory Stores data and program instructions for CPU to

execute.
 modem A regular modem uses a phone line and can

transfer data in a speed up to 56,000 bps (bits per
second).

 network interface card (NIC) A device to connect a
computer to a local area network (LAN). The LAN is
commonly used in business, universities, and government
organizations. A typical type of NIC, called 10BaseT,
can transfer data at 10 Mbps.

 operating system (OS) A program that manages and
controls a computer’s activities (e.g., Windows, Linux,
Solaris).

 pixel Tiny dots that form an image on the screen.
 resolution Specifies the number of pixels per square

inch. The higher the resolution, the sharper and
clearer the image is.

 software The invisible instructions that control the
hardware and make it work.

 source code A program written in a programming language
such as Java.

 source file A file that stores the source code.
 specific import specifies a single class in the import

statement. For example, import javax.swing.JOptionPane
imports JOptionPane from package javax.swing.

 storage devices The permanent storage for data and
programs. Memory is volatile, because information is
lost when the power is off. Program and data are
stored on secondary storage and moved to memory when
the computer actually uses them.

 statement A unit of code that represents an action or
a sequence of actions.

 wildcard import imports all the classes in a package.
For example, import javax.swing.* imports all classes
from package javax.swing. import javax.swing.*;

© Copyright Y. Daniel Liang

Chapter 2

 algorithm Statements that describe how a problem is
solved in terms of the actions to be executed, and
specifies the order in which these actions should be
executed. Algorithms can help the programmer plan a
program before writing it in a programming language.

 assignment operator (=) Assigns a value to a variable.
 assignment statement A simple statement that assigns

a value to a variable using an assignment operator (=).
When a value is assigned to a variable, it replaces the
previous value of the variable, which is destroyed.

 backslash (\) -- A character that precedes another
character to denote the following character has a
special meaning. For example, ‘\t’ denote a tab
character. The backslash character is also used to
denote a Unicode character like ‘\u00FF’.

 byte type A primitive data type that represents an
integer in a byte. The range a byte value is from –27
(-128) to 27–1 (127).

 casting The process of converting a primitive data
type value into another primitive type.

 char type -- A primitive data type that represents a
Unicode character.

 constant A variable declared final in Java. A local
constant is a constant declared inside a method.

 data type Used to define variables to indicate what
kind of value the variable can hold.

 debugger A program that facilitates debugging. It
enables the program to be executed one statement at a
time and enables the contents of the variable to be
examined during execution.

 debugging The process of finding and fixing errors in a
program.

 declaration Defines variables, methods, and classes in
a program.

 decrement operator (--) Subtracts one from a numeric
variable or a char variable.

 double type A primitive data type to represent double
precision floating-point numbers with 14 to 15
significant digits of accuracy.

 encoding Representing a character using a binary code.
 final A modifier that specifies a constant.
 float type A primitive data type to represent single

precision floating-point numbers with 6 to 7
significant digits of accuracy. The double type is used

© Copyright Y. Daniel Liang

to represent double precisions with 14 to 15
significant digits of accuracy.

 floating-point number A number that includes a
fractional part.

 expression Represents a computation involving values,
variables, and operators, which evaluates to a value.

 expression statement If an expression is used as a
statement, it is called an expression statement.

 identifier A name of a variable, method, class,
interface, or package.

 increment operator (++) Adds one to a numeric variable
or a char variable.

 incremental development and testing A programming
methodology that develop and test program
incrementally. This approach is efficient and
productive. It help eliminate and isolate errors.

 indentation The use of tabs and spaces to indent the
source code to make it easy to read and understand.

 int type A primitive data type to represent an integer
in the range from –231 (-2147483648) to 231–1
(2147483647).

 IPO stands for Input, Process, and Output.
 literal A constant value that appears directly in the

program. A literal may be numeric, character, boolean,
or null for object type.

 logic error An error that causes the program to
produce incorrect result.

 long type A primitive data type to represent an integer
in the range from –263 to 263–1.

 narrowing (of types) Casting a variable of a type
with a larger range to a variable of a type with a
smaller range.

 operator Operations for primitive data type values.
Examples of operators are +, -, *, /, and %.

 primitive data type The primitive data types are byte,
short, int, long, float, double, boolean, and char.

 runtime error An error that causes the program to
terminate abnormally.

 short type A primitive data type that represents an
integer in the range from –215 (-32768) to 215–1
(32767).

 syntax error An error in the program that violates
syntax rules of the language.

 supplementary Unicode The original Unicode is 16-
bit. Those characters that go beyond the original 16-
bit limit are called supplementary characters.

© Copyright Y. Daniel Liang

 Unicode A code system for international characters
managed by the Unicode Consortium. Java supports
Unicode.

 Unix epoch January 1, 1970 GMT is known as the Unix
epoch because 1970 was the year when the Unix operating
system was formally introduced.

 variable Variables are used to store data and
computational results in the program.

 whitespace Characters ' ', '\t', '\f', '\r', and ‘\n'
are whitespaces characters.

 widening (of types) Casting a variable of a type with
a smaller range to a variable of a type with a larger
range.

© Copyright Y. Daniel Liang

Chapter 3

 boolean expression An expression that evaluates to a
Boolean value.

 boolean value true or false.
 boolean type A primitive data type for Boolean values

(true or false).
 break statement Break out of the switch statement.
 conditional operator The symbols ? and : appear

together in a conditional expression: booleanExpression
? expression1 : expression2;

 fall-through behavior In a switch statement, if Once a
case is matched, the statements starting from the
matched case are executed until a break statement or
the end of the switch statement is reached. This
phenomenon is referred to as the fall-through behavior.

 operand evaluation order Defines the order in which
individual operands are evaluated.

 operator associativity Defines the order in which
operators will be evaluated in an expression if the
operators has the same precedence order.

 operator precedence Defines the order in which
operators will be evaluated in an expression.

 selection statement A statement that uses if or switch
statement to control the execution of the program.

 short-circuit evaluation Evaluation that stops when
the result of the expression has been determined, even
if not all the operands are evaluated. The evaluation
involving && or || are examples of short-circuit
evaluation.

© Copyright Y. Daniel Liang

Chapter 4

 break statement Break out of the current loop.
 continue statement Break out of the current

iteration.
 do-while loop A loop construct that begins with the

keyword do.
 for loop A loop construct that begins with the

keyword for.
 infinite loop A loop that runs indefinitely due to a

bug in the loop.
 iteration One time execution of the loop body.
 labeled break statement Break out of the specified

labeled loop.
 labled continue statement Break out of the current

iteration of the labeled loop.
 loop A structure that control repeated executions of

a block of statements.
 loop-continuation-condition A Boolean expression

that controls the execution of the body. After each
iteration, the loop-continuation-condition is
reevaluated. If the condition is true, the execution of
the loop body is repeated. If the condition is false,
the loop terminates.

 loop body The part of the loop that contains the
statements to be repeated.

 nested loop Consists of an outer loop and one or more
inner loops. Each time the outer loop is repeated, the
inner loops are reentered, and all required iterations
are performed.

 off-by-one error A common in the loop because the
loop is executed one more or one less time than it
should have been.

 sentinel value A special input value that signifies
the end of the input.

 while loop A loop construct that begins with the
keyword while.

© Copyright Y. Daniel Liang

Chapter 5

 actual parameter (i.e., argument) The variables or data
to substitute formal parameters when invoking a method.

 argument Same as actual parameter
 ambiguous invocation There are two or more possible

methods to match an invocation of a method, neither is
more specific than the other(s). Therefore, the
invocation is ambiguous.

 divide and conquer The concept of method abstraction
can be applied to the process of developing programs.
When writing a large program, you can use the “divide
and conquer” strategy to decompose it into subproblems.
The subproblems can be further decomposed into smaller,
more manageable problems.

 formal parameter (i.e., parameter) The variables
defined in the method signature.

 information hiding A software engineering concept for
hiding the detail implementation of a method for the
client.

 method A collection of statements grouped together to
perform an operation. See class method; instance
method.

 method abstraction A technique in software
development that hides detailed implementation. Method
abstraction is defined as separating the use of a
method from its implementation. The client can use a
method without knowing how it is implemented. If you
decide to change the implementation, the client program
will not be affected.

 method overloading Method overloading means that you
can define methods with the same name in a class as
long as there is enough difference in their parameter
profiles.

 method signature The combination of the name of a
method and the list of its parameters.

 modifier A Java keyword that specifies the properties
of data, methods, and classes and how they can be used.
Examples of modifiers are public, private, and static.

 package A mechanism for organizing classes.
 pass-by-value (i.e., call-by-value) A term used when

a copy of the value of the argument is passed to the
method. For a parameter of a primitive type, the actual
value is passed; for a parameter of a reference type,
the reference for the object is passed.

 return type The data type for the return value in a
method.

© Copyright Y. Daniel Liang

 return value A value returned from a method using the
return statement.

 scope of variable The portion of the program where
the variable can be accessed.

 stepwise refinement When writing a large program, you
can use the “divide and conquer” strategy, also known
as stepwise refinement, to decompose it into
subproblems. The subproblems can be further decomposed
into smaller, more manageable problems.

 stub A simple, but not a complete version of the
method. The use of stubs enables you to test invoking
the method from a caller.

© Copyright Y. Daniel Liang

Chapter 6

 anonymous array An array created without an explicit
reference.

 array A data structure for storing a collection of
data of the same type.

 array initializer A short hand notation to create and
initialize an array.

 binary search An efficient method to search a key in
an array. Binary search first compares the key with the
element in the middle of the array and reduces the
search range by half. For binary search to work, the
array must be pre-sorted.

 garbage collection A JVM feature that automatically
detects and reclaims the space occupied by unreferenced
objects.

 index An integer value used to specify the position of
an element in the array. The array index is an int
value starting with 0 for the first element, 1 for the
second, and so on.

 indexed variable arrayRefVar[index] is referred to as
an indexed variable that access an element in the array
through an index.

 insertion sort An approach to sort array. Suppose that
you want to sort a list in ascending order. The
insertion-sort algorithm sorts a list of values by
repeatedly inserting a new element into a sorted
sublist until the whole list is sorted.

 linear search A method to search an element in an
array. Linear search compares the key with the element
in the array sequentially.

 selection sort An approach to sort array. It finds
the largest number in the list and places it last. It
then finds the largest number remaining and places it
next to last, and so on until the list contains only a
single number.

© Copyright Y. Daniel Liang

Chapter 8

 action same as behavior.
 Anonymous object An object created without assigned to

a reference variable.
 accessor method (getter) The method for retrieving a

private field in an object.
 class An encapsulated collection of data and methods

that operate on data. A class may be instantiated to
create an object that is an instance of the class.

 constructor A special method for initializing objects
when creating objects using the new operator. The
constructor has exactly the same name as its defining
class. Constructors can be overloaded, making it easier
to construct objects with different initial data
values.

 data field encapsulation To prevent direct
modifications of properties through the object
reference, you can declare the field private, using
the private modifier. Data field encapsulation makes
the class easy to maintain.

 default constructor If a class does not define any
constructors explicitly, a no-arg constructor with
empty body is assumed. This is called a default
constructor.

 dot operator (.) An operator used to access members of
an object. If the member is static, it can be accessed
through the class name using the dot operator.

 instance An object of a class.
 instance method A nonstatic method in a class.

Instance methods belong to instances and can only be
invoked by them.

 instance variable A nonstatic data member of a class.
An instance variable belongs to an instance of the
class.

 instantiation The process of creating an object of a
class.

 mutator method (setter) A method that changes the
value of a private field in an object.

 null A literal of a reference variable that does not
reference any concrete object.

 no-arg constructor A constructor without arguments.
 object-oriented programming (OOP) An approach to

programming that involves organizing objects and their
behavior into classes of reusable components.

 Unified Modeling Language (UML) A graphical notation

© Copyright Y. Daniel Liang

for describing classes and their relationships.
 package-private (or package-access) If public or

private is not used, then by default the classes,
methods, and data are accessible by any class in the
same package. This is known as package-private or
package-access.

 private A modifier for members of a class. A private
member can only be referenced inside the class.

 public A modifier for classes, data, and methods
that can be accessed by all programs.

 reference A value that references an object.
 reference type A data type that is a class or an

interface.
 static method A method that can be invoked without

creating an instance of the class. To define static
methods, put the modifier static in the method
declaration.

 static variable A data member declared using the static
modifier. A static variable is shared by all instances
of that class. Static variables are used to communicate
between different objects of the same class and to
handle global states among these objects.

 Unified Modeling Language A graphic notation for
describing classes and objects.

© Copyright Y. Daniel Liang

Chapter 10

 abstract data type A class is also known as an
abstract data type.

 aggregation A special form of association that
represents an ownership relationship between two
classes.

 boxing Converting a primitive value to a wrapper
object is called boxing.

 class abstraction A technique in software development
that hides detailed implementation. Class abstraction
hides the implementation of the class from the client,
if you decide to change the implementation, the client
program will not be affected.

 class encapsulation Combining of methods and data into
a single data structure.

 class’s contract Refers to the collection of methods
and fields that are accessible from outside a class,
together with the description of how these members are
expected to behave.

 class’s variable Instance and static variables in a
class are referred to as the class’s variables or data
fields.

 composition An object consists of other objects. This
is called composition.

 has-a relationship composition models a has-a
relationship.

 immutable class A class is immutable if it contains
all private data fields and no mutator methods and no
accessor methods that would return a reference to a
mutable data field object.

 immutable object An object of immutable class.
 multiplicity Each class involved in a relationship

may specify a multiplicity. A multiplicity could be a
number or an interval that specifies how many of the
class’s objects are involved in the relationship.

 stack A stack is a data structure that holds
objects in a last-in first-out fashion.

 this Refers to the object itself.
 unboxing Converting a primitive value to a wrapper

object is called boxing. The reverse conversion is
called unboxing.

© Copyright Y. Daniel Liang

Chapter 11

 actual type The actual type of the variable is the
actual class for the object referenced by the variable.

 array list A data structure for storing a list of
array. The list size can grow and shrink.

 casting objects Converting an object of one object
type into another object type. The contents of the
object are not changed.

 constructor chaining Constructing an instance of a
class invokes all the constructor, chaining
superclasses along the inheritance chain.

 dynamic binding A method may be defined in a
superclass, but is overridden in a subclass. Which
implementation of the method is used on a particular
call will be determined dynamically by the JVM at
runtime. This capability is known as dynamic binding.

 final A modifier for classes, data, methods, and local
variables. A final class cannot be extended, a final
data or local variable is a constant, and a final
method cannot be overridden in a subclass.

 generic programming Allows methods to be used
generically for a wide range of object arguments
through polymorphism.

 inheritance Defining a new class by extending an
existing class.

 instanceof An operator that checks whether an object
is an instance of a class.

 is-a relationship Same as inheritance.
 override Implement the method in a subclass that is

declared in a superclass.
 polymorphism Refers to the feature that an object of

a subclass can be used by any code designed to work
with an object of its superclass.

 protected A modifier for members of a class. A
protected member of a class can be used in the class in
which it is declared or any subclass derived from that
class.

 subclass (child class or derived class) A class that
inherits from or extends a superclass.

 subtype Same as subclass.
 superclass (parent class or extended class) A class

inherited from a subclass.
 supertype Same as superclass.
 type inference The concrete type is no longer

required in the constructor thanks to a feature called

© Copyright Y. Daniel Liang

type inference.

© Copyright Y. Daniel Liang

Chapter 12

 Abstract Window Toolkit (AWT) The set of components for
developing simple graphics applications that was in use
before the introduction of Swing components. The AWT
user interface components have now been replaced by the
Swing components, but other AWT classes such as helper
classes, and event-handling classes are still used.

 component class The classes for displaying GUI
component.

 container class The classes for containing GUI
components.

 heavyweight component Rendering of the GUI components
are heavily dependent on the native GUI.

 help class The classes for describing the properties
of GUI components.

 layout manager The classes for specifying how
components are arranged in a container.

 lightweight component Rendering of most of the GUI
components are independent on the native GUI.

 Swing The Swing GUI components are painted directly
on canvases using Java code except for components that
are subclasses of java.awt.Window or java.awt.Panel,
which must be drawn using native GUI on a specific
platform. Swing components are less dependent on the
target platform and use less resource of the native
GUI. Swing components are more flexible and versatile
than their AWT counterparts.

 splash screen A splash screen is an image that is
displayed while the application is starting up.

 top-level container A container is called a top-level
container if it can be displayed without being embedded
in another container.

© Copyright Y. Daniel Liang

Chapter 14

 absolute filename An absolute file name (or full
name) contains a file name with its complete path and
drive letter.

 chained exception Throw new exceptions along with the
original exception.

 checked exception Exceptions other than
RuntimeException and Error.

 declare exception All checked exceptions thrown by
the method must be explicitly declared in the method
declaration so that the caller of the method is
informed of the exception.

 exception An unexpected event indicating that a
program has failed in some way. Exceptions are
represented by exception objects in Java. Exceptions
can be handled in a try-catch block.

 throw exception A program that detects an error can
create an instance of an appropriate exception type and
throw it. This is known as throwing an exception.

 unchecked exception Instances of RuntimeException and
Error.

© Copyright Y. Daniel Liang

Chapter 15

 abstract class When you are designing classes, a
superclass should contain common features that are
shared by subclasses. Sometimes the superclass is so
abstract that it cannot have any specific instances.
These classes are called abstract classes and are
declared using the abstract modifier. Abstract classes
are like regular classes with data and methods, but you
cannot create instances of abstract classes using the
new operator.

 abstract method A method signature without
implementation. Its implementation is provided by its
subclasses. An abstract method is denoted with an
abstract modifier and must be contained in an abstract
class. In a nonabstract subclass extended from an
abstract class, all abstract methods must be
implemented, even if they are not used in the subclass.

 deep copy When cloning an object, all its fields are
cloned recursively.

 interface An interface is treated like a special
class in Java. Each interface is compiled into a
separate bytecode file, just like a regular class. You
cannot create an instance for an interface. The
structure of a Java interface is similar to that of an
abstract class in that it can have data and methods.
The data, however, must be constants, and the methods
can have only declarations without implementation.
Single inheritance is the Java restriction wherein a
class can inherit from a single superclass. This
restriction is eased by the use of an interface.

 marker interface An empty interface that is used to
signify that all the classes implementing the interface
share certain properties.

 multiple inheritance A class may extend multiple
superclasses.

 shallow copy When cloning an object, all its fields
are copied.

 single inheritance A class can extend only one
superclass.

 subinterface An interface inherited from other
interface.

© Copyright Y. Daniel Liang

Chapter 16
 anonymous inner class An inner class without a name.
 convenience listener adapter A class that implements

all the methods in a listener interface with an empty
body.

 event A signal to the program that something has
happened. Events are generated by external user
actions, such as mouse movements, mouse button clicks,
and keystrokes, or by the operating system, such as a
timer. The program can choose to respond to an event or
to ignore it.

 event delegation In Java event-driven programming,
events are assigned to the listener object for
processing. This is referred to as event delegation.

 event handler A method in the listener's object that is
designed to do some specified processing when a
particular event occurs.

 event listener The object that receives and handles the
event.

 event listener interface An interface implemented by
the listener class to handle the specified events.

 event object Contains whatever properties are
pertinent to the event.

 event registration To become a listener, an object must
be registered as a listener by the source object. The
source object maintains a list of listeners and
notifies all the registered listeners when an event
occurs.

 event source (source object) The object that generates
the event.

 event-driven programming Java graphics programming is
event-driven. In event-driven programming, codes are
executed upon the activation of events, such as
clicking a button or moving the mouse.

 inner class A class embedded in another class. Inner
classes enable you to define small auxiliary objects
and pass units of behavior, thus making programs simple
and concise.

© Copyright Y. Daniel Liang

Chapter 18

 applet A special kind of Java program that can run
directly from a Web browser. Various security
restrictions are imposed on applets. For example, they
cannot perform input/output operations on a user's
system and therefore cannot read or write files or
transmit computer viruses.

 HTML (Hypertext Markup Language) A script language to
design Web pages for creating and sharing multimedia-
enabled, integrated electronic documents over the
Internet.

 .html or .htm file The source code of an HTML file. It
contains HTML tags and text. It is the input for a Web
browser. A Web browser displays the contents of a .html
or .htm file.

 tag An HTML instruction that tells a Web browser how
to display a document. Tags are enclosed in brackets,
such as <html>, <i>, , and </html>.

 archive Java archive file can be used to group all the
project files in a compressed file for deployment.

© Copyright Y. Daniel Liang

 Chapter 19

 binary I/O Binary I/O interprets data as raw binary
values.

 deserialization The process of restoring an object
that was previously serialized.

 file pointer A location marker in a random access file
where data is read and written.

 random access file The file that can be both read and
written in any order.

 sequential access file The file is read or written
sequentially from beginning to end.

 serialization The process of writing an object to a
stream.

 stream A stream is an object that facilitates input or
output. For input, it is called an input stream. For
output, it is called an output stream.

 text I/O Text I/O interprets data in sequences of
characters.

© Copyright Y. Daniel Liang

Chapter 20

 base case A simple case where recursion stops.
 direct recursion A recursive method that invokes

itself.
 indirect recursion Method A invokes B, B then invokes

A.
 infinite recursion Recursion never stops.
 recursive method A method that invokes itself

directly or indirectly.
 recursive helper method Sometimes the original method

needs to be modified to receive additional parameters
in order to be invoked recursively. A recursive helper
method can be declared for this purpose.

 stopping condition Same as base case.
 Tail recursion A recursive method is said to be tail

recursive if there are no pending operations to be
performed on return from a recursive call.



© Copyright Y. Daniel Liang

Chapter 21

 actual concrete type A concrete type that substitutes
a generic type.

 bounded generic type A generic type with a bound
(e.g., <E extends SomeClass>).

 formal generic type A generic type.
 generic instantiation The process that instantiates

a generic type with a concrete type.
 raw type For backward compatibility, a generic class

may be used without specifying a concrete class.
 <?> type A wildcard that represents any object type.
 <? extends E> type Bounded wildcard.
 <? super E> type lower bound wildcard.

© Copyright Y. Daniel Liang

Chapter 22

 collection An object that contains a set or a list of
objects.

 comparator A collection of ordered elements with
duplicates allowed.

 convenience abstract class A class that partially
implements an interface.

 list A collection of ordered elements with duplicates
allowed.

 map A collection of entries, each consists of a key
and an object.

 priority queue In a priority queue, elements are
assigned with priorities. When accessing elements, the
element with the highest priority is removed first.

 queue A collection of entries, each consists of a key
and an object.

© Copyright Y. Daniel Liang

Chapter 23

 hash map A map in which entries are stored in
unpredictable order.

 hash set A set in which elements are stored in
unpredictable order.

 linked hash map A map in which entries are stored in
certain order (insertion order or access order).

 linked hash set A map in which elements are stored in
certain order (insertion order or access order).

 set A collection of nonduplicate elements.
 tree map A map in which the keys are sorted.
 tree set A set in which the elements are sorted.

© Copyright Y. Daniel Liang

Chapter 24

 average-case analysis An average-case analysis
attempts to determine the average amount of time among
all possible input of the same size.

 best-time analysis An input that results in the
shortest execution time is called the best-case input.
The analysis to find the best-case time is known as
worst-time analysis.

 big O notation Comparing algorithms by examining
their growth rates. This notation allows you to ignore
constants and smaller terms while focusing on the
dominating terms.

 constant time The Big O notation estimates the
execution time of an algorithm in relation to the input
size. If the time is not related to the input size, the
algorithm is said to take constant time with the

notation).1(O

 exponential time An algorithm with the)(ncO time
complexity is called an exponential algorithm. As the
input size increases, the time for the exponential
algorithm grows exponentially. The exponential
algorithms are not practical for large input size.

 growth rate measures how fast the time complexity of
an algorithm grows as the input size grows.

 logarithmic time An algorithm with the)(lognO time
complexity is called a logarithmic algorithm.

 quadratic time An algorithm with the)(2nO time
complexity is called a quadratic algorithm.

 worst-time analysis An input that results in the
longest execution time is called the worst-case input.
The analysis to find the worst-case time is known as
worst-time analysis.

© Copyright Y. Daniel Liang

Chapter 25

 bubble sort The bubble sort algorithm makes several
passes through the array. On each pass, successive
neighboring pairs are compared. If a pair is in
decreasing order, its values are swapped; otherwise,
the values remain unchanged. The technique is called a
bubble sort or sinking sort because the smaller values
gradually "bubble" their way to the top and the larger
values sink to the bottom.

 bucket sort The bucket sort algorithm works as
follows. Assume the keys are in the range from 0 to N-
1. We need N buckets labeled 0, 1, ..., and N-1. If an
element’s key is i, the element is put into the bucket
i. Each bucket holds the elements with the same key
value.

 external sort sort data stored in an external file.
 heap sort Heap sort uses a binary heap to sort an

array.
 merge sort The merge sort algorithm can be described

recursively as follows: The algorithm divides the array
into two halves and applies merge sort on each half
recursively. After the two halves are sorted, merge
them.

 quick sort Quick sort, developed by C. A. R. Hoare
(1962), works as follows: The algorithm selects an
element, called the pivot, in the array. Divide the
array into two parts such that all the elements in the
first part are less than or equal to the pivot and all
the elements in the second part are greater than the
pivot. Recursively apply the quick sort algorithm to
the first part and then the second part.

 radix sort Radix sort is like bucket sort, but it is
based on radix.

Chapter 27

 binary search tree A BST (with no duplicate
elements) has the property that for every node in the
tree, the value of any node in its left subtree is less
than the value of the node, and the value of any node
in its right subtree is greater than the value of the
node.

 binary tree A binary tree is a hierarchical
structure. It either is empty or consists of an
element, called the root, and two distinct binary
trees, called the left subtree and right subtree,

© Copyright Y. Daniel Liang

either or both of which may be empty.
 heap Heaps are a useful data structure for

designing efficient sorting algorithms and priority
queues. A heap is a binary tree with the following
properties: (1) It is a complete binary tree. (2) Each
node is greater than or equal to any of its children.

 Inorder traversal With inorder traversal, the left
subtree of the current node is visited first, then the
current node, and finally the right subtree of the
current node. The inorder traversal displays all the
nodes in a BST in increasing order.

 postorder traversal With postorder traversal, the
left subtree of the current node is visited first, then
the right subtree of the current node, and finally the
current node itself.

 preorder traversal With preorder traversal, the
current node is visited first, then the left subtree of
the current node, and finally the right subtree of the
current node. Depth-first traversal is the same as
preorder traversal.

 tree traversal Tree traversal is the process of
visiting each node in the tree exactly once.

© Copyright Y. Daniel Liang

Chapter 30

 adjacency list To represent edges using adjacency
lists, define an array of linked lists. The array has n
entries. Each entry represents a vertex. The linked
list for vertex i contains all the vertices j such that
there is an edge from vertex i to vertex j.

 adjacent vertices Two vertices in a graph are said to
be adjacent if they are connected by the same edge.

 adjacency matrix representing edges using a matrix.
 breadth-first search first visits a vertex, then all

its adjacent vertices, then all the vertices adjacent
to those vertices, and so on. To ensure that each
vertex is visited only once, skip a vertex if it has
already been visited.

 complete graph A complete graph is the one in which
every two pairs of vertices are connected.

 degree The degree of a vertex is the number of edges
incident to it.

 depth-first search first visits the root, then
recursively visits the subtrees of the root.

 directed graph In a directed graph, each edge has a
direction, which indicates that you can move from one
vertex to the other through the edge.

 graph A graph is a mathematical structure that
represents relationships among entities in the real
world.

 incident edges An edge in a graph that joins two
vertices is said to be incident to both vertices.

 parallel edge A loop is an edge that links a vertex
to itself. If two vertices are connected by two or more
edges, these edges are called parallel edges.

 Seven Bridges of Königsberg The first known problem
solved using graph theory.

 simple graph A simple graph is one that has no loops
and parallel edges.

 spanning tree Assume that the graph is connected and
undirected. A spanning tree of a graph is a subgraph
that is a tree and connects all vertices in the graph.

 weighted graph edges or vertices are assigned with
weights.

 undirected graph no directed edges.
 unweighted graph edges are vertices are not assigned

with weights.

© Copyright Y. Daniel Liang

Chapter 31

 Dijkstra’s algorithm A well-known algorithm for
finding the shortest path from a single source to all
other vertices in a weighted graph.

 edge-weighted graph edges are assigned with weights.
 minimum spanning tree A spanning tree with the

minimum total weights.
 Prim’s algorithm A well-known algorithm for finding a

spanning tree in a connected weighted graph.
 complete graph A complete graph is the one in which

every two pairs of vertices are connected.
 shortest path a path between tow vertices with the

shortest total weight.
 single-source shortest path a shortest path from a

source to all other vertices.
 vertex-weighted graph Weights assigned to vertices.

© Copyright Y. Daniel Liang

Chapter 32

 condition A lock may create any number of
Condition objects for thread communications.

 deadlock A situation in which two or more threads
acquire locks on multiple objects and each has the lock
on one object and is waiting for the lock on the other
object.

 event dispatcher thread A designated thread for
processing events in Java.

 fail-fast Refers to iterators. If you are using an
iterator to traverse a collection while the underlying
collection is being modified by another thread, then
the iterator will immediately fail by throwing
java.util.ConcurrentModificationException, which is a
subclass of RuntimeException.

 fairness policy A parameter for a Lock. If fairness
policy is true, it guarantees the longest-wait thread
to obtain the lock first. False fairness policies grant
a lock to a waiting thread without any access order.
Programs using fair locks accessed by many threads may
have poor overall performance than those using the
default setting, but have smaller variances in times to
obtain locks and guarantee lack of starvation.

 lock To access mutual exclusive resource, you must
first obtain an appropriate lock.

 race condition A situation that causes data
corruption due to unsynchronized access of data by
multiple threads.

 synchronization wrapper The Collections class
provides six static methods for wrapping a collection
into a synchronized version.

 synchronized A keyword to specify a synchronized
method or a synchronized block. A synchronized instance
method acquires a lock on this object and a
synchronized static method acquires a lock on the
class. A synchronized block acquires a lock on a
specified object, not just this object before executing
the statements in the block.

 thread A flow of execution of a task, with a
beginning and an end, in a program. A thread must be
an instance of java.lang.Thread.

 thread-safe A class is said to be thread-safe if an
object of the class does not cause a race condition in
the presence of multiple threads.

© Copyright Y. Daniel Liang

Chapter 34

 database system consists of a database, the software
that stores and manages data in the database, and the
application programs that present data and enable the
user to interact with the database system.

 domain constraint specifies the permissible values for
an attribute. Domains can be specified using standard
data types, such as integers, floating-point numbers,
fixed-length strings, and variant-length strings. The
standard data type specifies a broad range of values.

 foreign key constraint defines the relationships
among relations. A foreign key is an attribute or a set
of attributes in one relation that refers to the
primary key in another relation.

 integrity constraint imposes a condition that all
legal values of the tables must satisfy. In general,
there are three types of constraints: domain
constraints, primary key constraints, and foreign key
constraints. DBMS enforces integrity constraints and
rejects any operation that would violate them.

 primary key constraint specifies that the values of
the primary key are unique in a relation.

 relational database based on the relational data
model. A relational database stores data in tables
(also known as relations). A relational data model has
three key components: structure, integrity, and
languages. Structure defines the representation of the
data. Integrity imposes constraints on the data.
Language provides the means for accessing and
manipulating data.

 Structured Query Language (SQL) the language for
defining tables and integrity constraints and for
accessing and manipulating data.

© Copyright Y. Daniel Liang

Chapter 36

 event set Event class and its corresponding listener
interface consists of an event set.

 JavaBeans component A serializable public class with a
public no-arg constructor.

 JavaBeans events A bean may have events with correctly
constructed public registration and deregistration
methods that enable the bean to add and remove
listeners. If the bean plays a role as the source of
events, it must provide registration methods for
registering listeners. By convention, the registration
method is named add<Event>Listener(<Event>Listener
listener) and a deregistration method is named
remove<Event>Listener(<Event>Listener listener).

 JavaBeans properties A JavaBeans property is defined
by it accessor or mutator methods, or both. By
convention, the accessor method is named
get<PropertyName>(), which takes no parameters and
returns a primitive type value or an object of a type
identical to the property type. For a property of
boolean type, the accessor method should be named
is<PropertyName>(), which returns a boolean value. The
mutator method should be named
set<PropertyName>(dataType p), which takes a single
parameter identical to the property type and returns
void.

© Copyright Y. Daniel Liang

Chapter 39

 MVC architecture An approach for developing
components by separating data storage and handling from
the visual representation of the data.

 model The component for storing and handling data,
known as a model, contains the actual contents of the
component.

 view The component for presenting the data, known as
a view, handles all essential component behaviors.

 controller The controller is a component that is
usually responsible for obtaining data.

© Copyright Y. Daniel Liang

Chapter 41

 BLOB type a new SQL type defined in SQL3 for
representing a binary large object (e.g., an image
file, java objects).

 CLOB type a new SQL type defined in SQL3 for
representing a character large object (e.g., a large
text file).

 batch mode executing SQL statements in batch mode from
JDBC.

 scrollable result set You can scroll a result set in
JDBC 2 and move the cursor in any direction or directly
anywhere.

 updateable result set You can update database through
a result set in JDBC 2.

© Copyright Y. Daniel Liang

Chapter 42

 Common Gateway Interface (CGI) A protocol for server-
side programs to generate dynamic Web content.

 CGI programs The programs that interact with a Web
server through the common gateway interface. The Web
server receives a request from a Web browser and passes
it to the CGI program. The CGI program processes the
request and generates a response at runtime. CGI
programs can be written in any language, but the Perl
language is the most popular choice.

 Cookie Small text files that store sets of name-
value pairs on the disk in the client’s computer.
Cookies can be used for session tracking.

 GET and POST methods The methods for sending requests
to the Web server. The POST method always triggers the
execution of the corresponding CGI or servlet program.
The GET method may not cause the CGI or servlet program
to be executed if the previous same request is cached
in the Web browser.

 HTML form An HTML construct that enables you to
submit data to the Web server in a convenient form.
When issuing a request from an HTML form, either a GET
method or a POST method can be used. The form
explicitly specifies which of the two is used. If the
GET method is used, the data in the form are appended
to the request string as if it were submitted using a
URL. If the POST method is used, the data in the form
are packaged as part of the request file. The server
program obtains the data by reading the file.

 life-cycle methods Every servlet implements the
Servlet interface. The init, service, and destroy
methods are known as life-cycle methods in the Servlet
interface.

 URL query string Part of URL that specifies the
location of the servlet program, parameters, and their
values (e.g.,
ServletClass?pname1=pvalue1&pname2=pvalue2). The ?
symbol separates the program from the parameters. The
parameter name and value are associated using the =
symbol. Parameter pairs are separated using the &
symbol. The + symbol denotes a space character.

 servlet A Java program that runs on a Web server to
produce dynamic Web pages.

 servlet container (servlet engine) A software that
runs servlets.

 Tomcat A servlet engine developed by Apache that

© Copyright Y. Daniel Liang

serves as a standard reference implementation for Java
servlets and Java Server Pages. It can be used to test
servlets and ServerPages.

