

© Copyright Y. Daniel Liang, 2005
1

Supplement IV.F: GridBagLayout
For Introduction to Java Programming

Y. Daniel Liang

The GridBagLayout manager is the most flexible and the most
complex. It is similar to the GridLayout manager in the
sense that both layout managers arrange components in a
grid. The components of GridBagLayout can vary in size,
however, and can be added in any order. For example, with
GridBagLayout you can create the layout shown in Figure
31.5.

***Same as Fig28.5 in intro6e p924

0

1

2

3

0 1 2 3

Text
Area

1

JPanel

Text
Area 2

Text
Field

Button 1 Button 2

Label

0 1 2 3

0

1

2

3

Figure 31.5

A GridBagLayout manager divides the container into cells. A
component can occupy several cells.

The constructor GridBagLayout() is used to create a new
GridBagLayout. In GridLayout, the grid size (the number of
rows and columns) may be specified in the constructor. It is
not specified in GridBagLayout. The actual size is
dynamically determined by the constraints associated with
the components added to the container of GridBagLayout.

Each GridBagLayout uses a dynamic rectangular grid of cells,
with each component occupying one or more cells called its
display area. Each component managed by a GridBagLayout is
associated with a GridBagConstraints instance that specifies
how the component is laid out within its display area. How a
GridBagLayout places a set of components depends on the
GridBagConstraints and minimum size of each component, as
well as the preferred size of the component's container.

To use GridBagLayout effectively, you must customize the
GridBagConstraints of one or more of its components. You
customize a GridBagConstraints object by setting one or more
of its public instance variables. These variables specify
the component’s location, size, growth factor, anchor,
inset, filling, and padding.

© Copyright Y. Daniel Liang, 2005
2

31.3.2.1 Location
The variables gridx and gridy specify the cell at the upper
left of the component's display area, where the upper-
leftmost cell has the address gridx=0, gridy=0. Note that
gridx specifies the column in which the component will be
placed, and gridy specifies the row in which it will be
placed. In Figure 31.5, Button 1 has a gridx value of 1 and
a gridy value of 3, and Label has a gridx value of 0 and a
gridy value of 0.

You can assign GridBagConstraints.RELATIVE to gridx to
specify that the component be placed immediately after the
component that was just added to the container. You can
assign GridBagConstraints.RELATIVE to gridy to specify that
the component be placed immediately below the component that
was just added to the container.

31.3.2.2 Size
The variables gridwidth and gridheight specify the number of
cells in a row (for gridheight) or column (for gridwidth) in
the component's display area. The default value is 1. In
Figure 31.5, the JPanel in the center occupies two columns
and two rows, so its gridwidth is 2, and its gridheight is
2. Text Area 2 occupies one row and one column; therefore
its gridwidth is 1, and its gridheight is 1.

You can assign GridBagConstraints.RELATIVE.REMAINDER to
gridwidth (gridheight) to specify that the component is to
be the last one in its row (column).

31.3.2.3 Growth Weight
The variables weightx and weighty specify the extra
horizontal and vertical space to allocate for the component
when the resulting layout is smaller horizontally than the
area it needs to fill.

The GridBagLayout manager calculates the weight of a column
to be the maximum weightx (weighty) of all the components in
a column (row). The extra space is distributed to each
column (row) in proportion to its weight.

Unless you specify a weight for at least one component in a
row (weightx) and a column (weighty), all the components
clump together in the center of their container. This is
because, when the weight is zero (the default), the
GridBagLayout puts any extra space between its grid of cells
and the edges of the container. You will see the effect of
these parameters in Listing 31.2.

31.3.2.4 Anchor
The variable anchor specifies where in the area the
component is placed when it does not fill the entire area.
Valid values are:

GridBagConstraints.CENTER (the default)

© Copyright Y. Daniel Liang, 2005
3

GridBagConstraints.NORTH

GridBagConstraints.NORTHEAST

GridBagConstraints.EAST

GridBagConstraints.SOUTHEAST

GridBagConstraints.SOUTH

GridBagConstraints.SOUTHWEST

GridBagConstraints.WEST

GridBagConstraints.NORTHWEST

31.3.2.5 Filling
The variable fill specifies how the component should be
resized if its viewing area is larger than its current size.
Valid values are GridBagConstraints.NONE (the default),
GridBagConstraints.HORIZONTAL (makes the component wide
enough to fill its display area horizontally, but doesn't
change its height), GridBagConstraints.VERTICAL (makes the
component tall enough to fill its display area vertically,
but doesn't change its width), and GridBagConstraints.BOTH
(makes the component totally fill its display area).

31.3.2.6 Insets
The variable insets specifies the external padding of the
component, the minimum amount of space between the component
and the edges of its display area. The default value is new
Insets(0, 0, 0, 0).

31.3.2.7 Padding
The variables ipadx and ipady specify the internal padding
of the component: how much space to add to its minimum width
and height. The width of the component is at least its
minimum width plus (ipadx * 2) pixels, and the height of the
component is at least its minimum height plus (ipady * 2)
pixels. The default value of these variables is 0. The
insets variable specifies the external padding, while the
ipadx and ipady variables specify the internal padding, as
shown in Figure 31.6.

***Same as Fig28.6 in intro6e p926

© Copyright Y. Daniel Liang, 2005
4

0

1

2

3

4

5

6

7

Inset top

Inset bottom

Inset
left

Inset
right Component

0 1 2 3 4 5 6 7 8 9 10

ipadx ipadx

ipady

ipady

Figure 31.6

You can specify the external insets and internal padding for
a component in the container of the GridBadLayout manager.

31.3.2.8 Constructing a GridBagConstraints Object
There are two constructors for creating a GridBagConstraints
object:

[BL] public GridBagConstraints()

Constructs a GridBagConstraints object with all of its
fields set to their default values.

[BL] public GridBagConstraints(int gridx, int gridy, int gridwidth, int
gridheight, double weightx, double weighty, int anchor, int fill, Insets insets,
int ipadx, int ipady)

Constructs a GridBagConstraints object with the
specified field values.

31.3.2.9 Adding a Component to the Container of
GridBagLayout
To add a component to the container of GridBarLayout, use
the following method in the container:

public void add(Component comp, Object gbConstraints)

Adds a component to the container with the specified
GridBagConstraints.

31.3.2.10 Example: Using GridBagLayout
Listing 31.2 gives a program that uses the GridBagLayout
manager to create a layout for Figure 31.5. The output of
the program is shown in Figure 31.7.

© Copyright Y. Daniel Liang, 2005
5

Figure 31.7

The components are placed in the frame of GridBagLayout.

Listing 31.2 ShowGridBagLayout.java

PD: Please add line numbers in the following code
***Layout: Please layout exactly. Don’t skip the space. This
is true for all source code in the book. Thanks, AU.
<Side Remark line 5: UI components>
<Side Remark line 15: create UI>
<Side Remark line 51: set constraints>
<Side Remark line 68: main omitted>

import java.awt.*;
import javax.swing.*;

public class ShowGridBagLayout extends JApplet {
 private JLabel jlbl = new JLabel(
 "Resize the Window and Study GridBagLayout", JLabel.CENTER);
 private JTextArea jta1 = new JTextArea("Text Area 1", 5, 15);
 private JTextArea jta2 = new JTextArea("Text Area 2", 5, 15);
 private JTextField jtf = new JTextField("JTextField");
 private JPanel jp = new JPanel();
 private JButton jbt1 = new JButton("Button 1");
 private JButton jbt2 = new JButton("Button 2");

 public ShowGridBagLayout() {
 // Set GridBagLayout in the container
 setLayout(new GridBagLayout());

 // Create an GridBagConstraints object
 GridBagConstraints gbConstraints = new GridBagConstraints();

 gbConstraints.fill = GridBagConstraints.BOTH;
 gbConstraints.anchor = GridBagConstraints.CENTER;

 Container container = getContentPane();

 // Place JLabel to occupy row 0 (the first row)
 addComp(jlbl, container, gbConstraints, 0, 0, 1, 4, 0, 0);

 // Place text area 1 in row 1 and 2, and column 0
 addComp(jta1, container, gbConstraints, 1, 0, 2, 1, 5, 1);

 // Place text area 2 in row 1 and column 3
 addComp(jta2, container, gbConstraints, 1, 3, 1, 1, 5, 1);

 // Place text field in row 2 and column 3
 addComp(jtf, container, gbConstraints, 2, 3, 1, 1, 5, 0);

© Copyright Y. Daniel Liang, 2005
6

 // Place JButton 1 in row 3 and column 1
 addComp(jbt1, container, gbConstraints, 3, 1, 1, 1, 5, 0);

 // Place JButton 2 in row 3 and column 2
 addComp(jbt2, container, gbConstraints, 3, 2, 1, 1, 5, 0);

 // Place Panel in row 1 and 2, and column 1 and 2
 jp.setBackground(Color.red);
 jp.setBorder(new javax.swing.border.LineBorder(Color.black));
 gbConstraints.insets = new Insets(10, 10, 10, 10);
 addComp(jp, container, gbConstraints, 1, 1, 2, 2, 10, 1);
 }

 /** Add a component to the container of GridBagLayout */
 private void addComp(Component c, Container container,
 GridBagConstraints gbConstraints,
 int row, int column,
 int numberOfRows, int numberOfColumns,
 double weightx, double weighty) {
 // Set parameters
 gbConstraints.gridx = column;
 gbConstraints.gridy = row;
 gbConstraints.gridwidth = numberOfColumns;
 gbConstraints.gridheight = numberOfRows;
 gbConstraints.weightx = weightx;
 gbConstraints.weighty = weighty;

 // Add component to the container with the specified layout
 container.add(c, gbConstraints);
 }

}

The program defines the addComp method (lines 52–67) to add
a component to the container of GridBagLayout with the
specified constraints. The GridBagConstraints object
gbConstraints created in line 19 is used to specify the
layout constraints for each component. Before adding a
component to the container, set the constraints in
gbConstraints and then use container.add(c, gbConstraints)
(line 66) to add the component to the container.

What would happen if you change the weightx parameter for
jbt2 to 10 in line 42? Now jbt2’s weightx is larger than
jbt1’s. When you enlarge the window, jbt2 will get larger
horizontally than jbt1.

The weightx and weighty for all the other components are 0.
Whether the size of these components grows or shrinks
depends on the fill parameter. The program defines fill =
BOTH for all the components added to the container (line
21).

Consider this scenario: Suppose that you enlarge the window.
The display area for text area jta1 will increase. Because
fill is BOTH for jta1, jta1 fills in its new display area.
If you set fill to NONE for jta1, jta1 will not expand or

© Copyright Y. Daniel Liang, 2005
7

shrink when you resize the window.

The insets parameter is (0, 0, 0, 0) by default. For the
panel jp, insets is set to (10, 10, 10, 10) (line 47).

