

CHAPTER

2

Relational Data Model

Objectives
• To become familiar with relational data structure.

• To understand the characteristics of relations.

• To know the definition of primary keys, candidate
keys, superkeys, and foreign keys.

• To understand the relation constraints (primary key
constraints, foreign key constraints, and domain
constraints).

• To know relational algebra and relational calculus.

© Copyright Y. Daniel Liang, 2005
1

2.1 Introduction

A data model is used to describe data in a database. A
relational data model describes data in terms of relations.
The relational model is built around a simple and natural
structure. A relation is actually a table. Tables are easy
to understand and easy to use. The relational model provides
a simple yet powerful way to represent data. The relational
data model is used in the relational database systems. A
substantial theory has been established on relational data
model. This book focuses on the theory that has direct
impact on developing database applications.

A relational data model has three key components: structure,
integrity, and languages. Structure defines the
representation of the data. Integrity imposes constraints on
the data. Language provides the means for accessing and
manipulating data. This chapter introduces the structure,
characteristics, integrity constraints and theoretical query
languages of the relational data model. Theoretical query
languages such as relational algebra and relational calculus
are the basis for the commercial SQL languages.
Understanding the theoretical query languages helps to learn
SQL.

2.2 Relational Structures

A relational database consists of a set of relations. A
relation has two things in one: a schema and an instance of
the schema. The schema defines the relation and an instance
is the content of the relation at a given time. An instance
of a relation is nothing more than a table with rows and
named columns. For convenience with no confusion, we refer
instances of relations as just relations or tables. Tables
describe the relationship among data. Each row in the table
represents a record of related data. For example, “11111,”
“CSCI,” “1301,” “Introduction to Java I,” and “4” are
related to form a record (the first row in Figure 1.4 on
Page XX) in the Course table. Not only the data in the same
row are related, but also data in different tables may be
related through common attributes. Suppose the database has
another table named Subject that describes the subjects. A
subject is described by subject ID, subject name, the
department that sponsors the subject, and the subject start
time. Figure 2.1 gives a sample Subject table. The Course
table and the Subject table are related through their common
attribute subjectId.

© Copyright Y. Daniel Liang, 2005
2

 subjectId name startTime deptId

CSCI Computer Science 1-AUG-1980 CS
ITEC Information Technology 1-JAN-2002 CS
MATH Mathematics 1-AUG-1935 MATH
STAT Statistics 1-AUG-1980 MATH
EDUC Education 1-AUG-1980 EDUC

Course Table

Subject Table

courseId subjectId courseNumber title numOfCredits

11111 CSCI 1301 Introduction to Java I 4
11112 CSCI 1302 Introduction to Java II 3
11113 CSCI 3720 Database Systems 3
11114 CSCI 4750 Rapid Java Application 3
11115 MATH 2750 Calculus I 5
11116 MATH 3750 Calculus II 5
11117 EDUC 1111 Reading 3
11118 ITEC 1344 Database Administration 3

Figure 2.1

The Subject table and the Course table are related through
the subjectId.

NOTE: A table or a relation is not same as a
file. Most of the relational database systems
store multiple tables in a file.

NOTE: All the tables used in the text are posted
on the Companion Web site.

In the relational database theory, a row is called a tuple
and a column is called an attribute, as shown in Figure 2.2.
The number of the columns is called the degree of the
relation and the number of the rows is called the
cardinality of the relation. The degree of the Subject table
is 4 and the cardinality is 7, as shown in Figure 2.2.

Subject subjectId name deptId startTime

CSCI Computer Science CS August 1980
IT Information Technology CS January 2002
Math Mathematics Math August 1935
Stat Statistics Math August 1980
Elem Elementary Education Educ null
Mid Middle School Education Educ null
High High School Education Educ null

 Attributes/Columns

Tuples/
Rows

Relation/Table Name

© Copyright Y. Daniel Liang, 2005
3

Figure 2.2

A table has a table name, column names, and rows.

Each attribute has a set of permissible values, called
domain of that attribute. For example, the domain for the
attribute subjectId in the Subject table is a set of subject
IDs used in the university. Let D1 denote the set of all
subject IDs, D2 the set of all subject names, D3 the set of
all department IDs, and D4 the set of all start times. A row
in the Subject table is a tuple (v1, v2, v3, v4), where vi ∈
Di for (i = 1, 2, 3, 4). The Subject table is a subset of D1
× D2 × D3 × D4. In general, a table of n attributes must be a
subset of D1 × D2 × ... × Dn.

2.2 Characteristics of Relations

A relation is a named table in a relational database. In the
table, each column has a unique name and its domain is
defined by an appropriate data type such as number, string,
and date. Specifically, a relation has the following
characteristics:

• No two records in the table are identical.
• The order of the records does not matter.
• The order of the columns does not matter.
• Each value in the column is atomic, which means that it

cannot be decomposed. If it is decomposed, its meaning
is lost. For example, each row in the first table in
Figure 2.3 describes a student and the courses took by
the student. The values in the courseId column are not
atomic. They can be decomposed into atomic values into
the second table in Figure 2.3.

studentId courseId

000112222 11111, 11112, 11113
111223333 11114, 11115, 11116
222223333 11111, 11112, 11117

studentId courseId

000112222 11111
000112222 11112
000112222 11113
111223333 11114
111223333 11115
111223333 11116
222223333 11111
222223333 11112
222223333 11117

Decomposed into

Figure 2.3

© Copyright Y. Daniel Liang, 2005
4

The first table contains non-atomic values in the courseId
column. These values can be decomposed into single atomic
values in the second table.

• A value may be null, which means unknown or not
applicable. For example, the start time for a subject
may be null if it is not known and the aptNo value in
the License table in Figure 2.4 may be null if the
address does not have an apartment number.

License Table

ssn licenseNo Name Street aptNo zipCode

111223333 133445555 John King 100 Main Stree null 30211
211334444 233345535 George Yao 210 Mountain Rd A 50211
321334445 313345545 Frank Khan 100 Washington St null 30411
431334446 422345555 Jill Long 210 Franklin Rd 340 30551
531334447 522345595 Dick Frew 313 Deer Creek 341-c 60211
631334448 622345565 Sam Gross 210 Speed Way 340 70218

Figure 2.4

A license is described by ssn, licenseNo, Name, Street,
aptNo, and zipCode.

2.3 Integrity Constraints

An integrity constraint imposes a condition that all legal
instances of the relations must satisfy. Figure 2.5 shows an
example of some integrity constraints:

subjecteId name startTime deptId

CSCI Computer Science 1-AUG-1980 CS
ITEC Information Technology 1-JAN-2002 CS
MATH Mathematics 1-AUG-1935 MATH
STAT Statistics 1-AUG-1980 MATH
EDUC Education 1-AUG-1980 EDUC

Course Table

Subject Table

courseId subjectId number title numOfCredits

11111 CSCI 1301 Introduction to Java I 4
11112 CSCI 1302 Introduction to Java II 3
11113 CSCI 3720 Database Systems 3
11114 CSCI 4750 Rapid Java Application 3

Each value in the
numOfCredits column must be
greater than 0 and less than 5

Each value in subjectId must
match a value in subjectId in
the Subject table

Each row must have a value
for couserId, and the value
must be unique

Each row must
have a value for
subjectId, and
the value must be
unique

© Copyright Y. Daniel Liang, 2005
5

Figure 2.5

The Subject table and the Course table have integrity
constraints.

In general, there are three types of constraints: domain
constraint, primary key constraint, and foreign key
constraint. Domain constraints and primary key constraints
are known as intra-relational constraints, meaning that a
constraint involves only one relation. The foreign key
constraint is known as inter-relational, meaning that a
constraint involves more than one relation.

2.3.1 Domain Constraints
Domain constraints specify the permissible values for an
attribute. Domains can be specified using standard data
types such as integers, floating-point numbers, fixed-length
strings, and variant-length strings. The standard data type
specifies a broad range of values. Additional constraints
can be specified to narrow the ranges. You can also specify
whether an attribute can be null. For example, the following
SQL statement specifies the data type for each attribute,
specifies that the attribute cannot be null, and specifies
numOfCredits must be greater than or equal to 1.

create table Course(
 courseId char(5),

 subjectId char(4) not null,

 number int not null,

 title varchar(50) not null,

 numOfCredits int not null

 constraint greaterThanOne check (numOfCredits >= 1));

2.3.2 Primary Key Constraints
To understand primary keys, it is helpful to know superkeys,
keys, and candidate keys. A superkey is an attribute or a
set of attributes that uniquely identify the relation. That
is, no two tuples have the same values on the superkey. By
definition, a relation consists of a set of distinct tuples.
The set of all attributes in the relation forms a superkey.

A key K is a minimal superkey, meaning that any proper
subset of K is not a superkey. It is possible that a
relation has several keys. In this case, each of the keys is
called a candidate key. For example, in the License table in
Figure 2.4, SSN and license number are the candidate keys.
The primary key is one of the candidate keys designated by
the database designer. The primary key is often used to
identify tuples in a relation.

The primary key can be defined in the logical database

© Copyright Y. Daniel Liang, 2005
6

schema using the create table statement in SQL. For example,
the following statement creates the Course table with
subjectId and number together as the primary key.

create table Course(
 courseId char(5),

 subjectId char(4),

 number int,

 title varchar(50), numOfCredits int

 constraint greaterThanOne check (numOfCredits >= 1),

 primary key (subjectId, number));

The primary key constraint specifies that the primary key
value of a tuple cannot be null and no two tuples in the
relation can have the same value on the primary key.

2.3.3 Foreign Key Constraints
In a relational database, data are related. Tuples in a
relation are related and tuples in different relations are
related through their common attributes. Informally
speaking, the common attributes are foreign keys. The
foreign key constraints define the relationships among
relations.

Formally, a set of attributes FK is a foreign key in a
relation R that references relation T if it satisfies the
following two rules:

• The attributes in FK have the same domain as the
primary key in T.

• A non-null value on FK in R must match a primary key
value in T.

As shown in Figure 2.6, collegeId is the foreign key in
Department that references the primary key collegeId in
College. Every collegeId value must match a collegeId value
in College.

deptId name headed collegeId

CS Computer Science 111221115 SC
MATH Mathematics 111221116 SC
CHEM Chemistry 111225555 SC
EDUC Education 333114444 EDUC
ACCT Accounting 333115555 BUSS

collegeId name since deanId

SC Science 1-AUG-1930 111221110
NURS Nursing 1-AUG-1960 null
EDUC Education 1-AUG-1935 111221117
BUSS Business 1-AUG-1955 111221114

Department Table College TableForeign Key Primary Key

Figure 2.6

The non-null foreign key value must match its referenced
primary key value.

© Copyright Y. Daniel Liang, 2005
7

R is called a referencing relation and T is called a
referenced relation. The graphical notation in Figure 2.7 is
used to denote that R references T through foreign key FK.

R T
 FK

Figure 2.7

The foreign key relationship can be described graphically
using an arrowed line.

Figure 2.8 shows a list of related tables and their foreign
keys. The primary keys are underlined.

Course(courseId, subjectId, number, title, numOfCredits)

Subject(subjectId, subjectName, deptId, startTime)

Department(deptId, name, chairId, collegeId)

College(collegeId, name, since, deanId)

Faculty(facultyId, name, supervisorId)

Course Subject

subjectId

Department

deptId

College Faculty

collegeId

deanId=>facultyId

chairId=>facultyId

supervisorId

Figure 2.8

Tables in a relational database are related through foreign
keys.

Several points arise with the foreign keys:
• A foreign key is not necessarily the primary key or

part of the primary in the relation. For example,
subjectId is a foreign key in the Course table that
references the Subject table, but it is not the primary
key in Course. departmentId is a foreign key in the
Subject table that references Department, but it is not
the primary key in Subject.

• The referencing relation and the referenced relation
may be the same table. For example, supervisorId is a
foreign key in Faculty that references facultyId in
Faculty.

• The foreign key is not necessary to have the same name
as its referenced primary key as long as they have the
same domain. For example, headId is a foreign key in
Department that references facultyId in Faculty.

• A relation may have more than one foreign key. For
example, headId and collegeId are both foreign keys in
Department.

• A foreign key value may be null. For example, if the

© Copyright Y. Daniel Liang, 2005
8

department head position is vacated for a department,
the headID is null.

The foreign key can be defined in the logical database
schema using the create table statement in SQL. For example,
the following statement creates the Course table with
subjectId as a foreign key that references the Subject
table.

create table Course(
 courseId char(5),

 subjectId char(4),

 number int,

 title varchar(50),

 numOfCredits int

 constraint greaterThanOne check (numOfCredits >= 1),

 primary key (subjectId, number),

 foreign key (subjectId) references Subject(subjectId));

20.2.2.4 Enforcing Integrity Constraints

DBMS enforces the integrity constraints and rejects any
operations that would violate the constraints. For example,
if you attempt to insert a new record ('11113', '3272',
'Database Systems', 0) into the Course table, it would fail
because the credit hours must be greater than or equal to 1;
if you attempt to insert a record with the same primary key
as an existing record in the table, the DBMS would report an
error and reject the operation; if you attempt to delete a
record in the Course table whose primary key value is
referenced by the records in the Enrollment table, the DBMS
would reject this operation.

NOTE: All relational database systems support
the primary key constraints and the foreign key
constraints. Not all database systems support
the domain constraints. For example, you cannot
specify the constraint that numOfCredits is
greater than or equal to 1 on Microsoft Access
database.

2.4 Query Languages (Optional)

In the preceding sections, you learned to represent data and
impose constraints on the data in the tables. This section
turns attention to how to retrieve data from the tables. The
commercial database systems use the SQL language to retrieve
data. SQL is based on the theoretical database languages –
relational algebra and relation calculus. Becoming familiar
with these two languages will give you a better
understanding on the database system and the SQL language.

© Copyright Y. Daniel Liang, 2005
9

2.4.1 Relational Algebra

The relational model enables you to define relations and
specify constraints on the relations. It also supports the
operations, known as the relational algebra, to manipulate
the relations. Relational algebra has seven essential
operators: + (union), ∩ (intersect), - (difference), σ
(selection), π (projection), × (product), and � (join).
These operators can be used to formulate basic queries.

NOTE: The commercial counterpart of the language
is SQL. Though relational algebra is not used by
the user, knowing it helps understand relational
models and learn SQL. The concept of relational
algebra is used to implement and optimize SQL
inside the DBMS.

2.4.1.1 Set Operators

Now you know a relation is a set of tuples and each tuple in
a relation has the same number and types of attributes. The
mathematical set operators (union, intersect, and
difference) can be applied on the relations that have the
same types of attributes.

The union of two relations yields a relation that combines
all distinct tuples from both relations. The intersect of
two relations is a set of tuples, each of which appears in
both relations. The difference between two relations is a
set of tuples that are in the first relation but not in the
second. Figure 2.9 demonstrates these operators.

© Copyright Y. Daniel Liang, 2005
10

A B C D

a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

R

A B C D

a1 b1 c1 d1
a5 b5 c5 d5

S

+ =>

A B C D

a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4
a5 b5 c5 d5

 R+S

A B C D

a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

R

A B C D

a1 b1 c1 d1
a5 b5 c5 d5

S

? =>

A B C D

a1 b1 c1 d1

R? S

A B C D

a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

R

A B C D

a1 b1 c1 d1
a5 b5 c5 d5

S

 - =>

A B C D

a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

 R-S

Figure 2.9

Relational algebra has three set operators.

2.4.1.2 Relational Operators

The selection (σ), project (π), product (×), and join (�)
are known as relational operators. The selection operator
selects the tuples from a relation that satisfies a
condition. For example, to select all three-credit hour
courses, you can write an expression using the selection
operator as follows:

σ(numOfCredits = 3)(Course)

The equivalent SQL statement is

select *
from Course
where numOfCredits = 3;

Figure 2.10 shows the result relation of the expression for
the Course table in Figure 1.4. The new relation has the
same attributes as the input relation, but may have fewer
rows.

© Copyright Y. Daniel Liang, 2005
11

Course Table

courseId subjectId courseNumber title numOfCredits

11112 CSCI 1302 Introduction to Java II 3
11113 CSCI 3720 Database Systems 3
11114 CSCI 4750 Rapid Java Application 3
11117 EDUC 1111 Reading 3
11118 ITEC 1344 Database Administration 3

The result of σ(numOfCredits = 3)(Course)

Figure 2.10

The selection operator selects the tuples from a relation
with a condition.

NOTE: You can use the comparison operators and
Boolean operators to form the selection
condition. The comparison operators are =
(equal), < (less than), <= (less than or equal),
> (greater than), >= (greater than or equal),
and <> (not equal) and the Boolean operators are
and, or, not.

The projection operator produces a new relation with the
specified attributes from the input relation. For example,
to obtain the course titles, you can write an expression
using the projection operator as follows:

π title(Course)

The equivalent SQL statement is

select title
from Course

Figure 2.11 shows the result relation of the expression.

The result of π title(Course)

title

Introduction to Java I
Introduction to Java II
Database Systems
Rapid Java Application
Calculus I
Calculus II
Reading
Database Administration

Figure 2.11

© Copyright Y. Daniel Liang, 2005
12

The projection operator selects the attributes from a
relation.

The product operator performs the Cartesian product on two
relations. It produces a tuple of the new relation for each
combination of tuples from both input relations. The product
of Department and College can be written in relational
algebra as follows:

Department × College

The equivalent SQL statement is

select Department.*, College.*
from Department, College

Figure 2.12 shows the result of the product of Department
and College (Figure 2.6). All the attributes from the two
relations are in the new relation.

deptId name headId collegeId College.collegeId name since deanId

CS Computer Science 111221115 SC SC Science 1-AUG-1930 999001111
CS Computer Science 111221115 SC NURS Nursing 1-AUG-1960 777001111
CS Computer Science 111221115 SC EDUC Education 1-AUG-1935 888001111
CS Computer Science 111221115 SC BUSS Business 1-AUG-1955 666001111
MATH Mathematics 111221116 SC SC Science 1-AUG-1930 999001111
MATH Mathematics 111221116 SC NURS Nursing 1-AUG-1960 777001111
MATH Mathematics 111221116 SC EDUC Education 1-AUG-1935 888001111
MATH Mathematics 111221116 SC BUSS Business 1-AUG-1955 666001111
CHEM Chemistry 111225555 SC SC Science 1-AUG-1930 999001111
CHEM Chemistry 111225555 SC NURS Nursing 1-AUG-1960 777001111
CHEM Chemistry 111225555 SC EDUC Education 1-AUG-1935 888001111
CHEM Chemistry 111225555 SC BUSS Business 1-AUG-1955 666001111
EDUC Education 333114444 EDUC SC Science 1-AUG-1930 999001111
EDUC Education 333114444 EDUC NURS Nursing 1-AUG-1960 777001111
EDUC Education 333114444 EDUC EDUC Education 1-AUG-1935 888001111
EDUC Education 333114444 EDUC BUSS Business 1-AUG-1955 666001111
ACCT Accounting 333115555 BUSS SC Science 1-AUG-1930 999001111
ACCT Accounting 333115555 BUSS NURS Nursing 1-AUG-1960 777001111
ACCT Accounting 333115555 BUSS EDUC Education 1-AUG-1935 888001111
ACCT Accounting 333115555 BUSS BUSS Business 1-AUG-1955 666001111

The result of Department × College

Figure 2.12

The product of two relations produces a set of tuples that
is the combination of tuples for the two relations.

The product in Figure 2.12 produces the complete combination
of all tuples from the input relations. A more useful
product is the one the produces the tuples with the same
collegeId. This type of product is known as join. collegeId
is called the joined attribute. A special case of join is
called natural join where the joined attribute appears only
once in the result. Figure 2.13 shows the result of the

© Copyright Y. Daniel Liang, 2005
13

natural join of Department and College on collegeId.

deptId name headed collegeId name since deanId

CS Computer Science 111221115 SC Science 1-AUG-1930 999001111
MATH Mathematics 111221116 SC Science 1-AUG-1930 999001111
CHEM Chemistry 111225555 SC Science 1-AUG-1930 999001111
EDUC Education 333114444 EDUC Education 1-AUG-1935 888001111
ACCT Accounting 333115555 BUSS Bussiness 1-AUG-1935 666001111

The result of Department ? collegeId College

Figure 2.13

The product of two relations produces a set of tuples that
is the combination of tuples for the two relations.

2.4.1.3 Combining Operators

The result of a relational algebra operation is a new
relation, which can be further manipulated using the
relational algebra. You can combine relational operators to
produce query results. Here are three examples:

1. Display the course title with four credit hours.

 π title(σnumOfCredits = 4(Course))

 The equivalent SQL statement is
select title

from Course

where numOfCredits = 4;

2. Find all the departments in the Science college.

 π Department.name (σ College.name = ‘Science’ (Department � collegeId
College)

The equivalent SQL statement is
select Department.name

from Department, College

where College.name = ‘Science’;

3. Display the course title with either three credit hours
or four credit hours.

 π title (σ numOfCredits = 3(Course)) union π title (σ numOfCredits =
(Course)) 4

 The equivalent SQL statement is

© Copyright Y. Daniel Liang, 2005
14

select title from Course where numOfCredits = 3

union

select title from Course where numOfCredits = 4;

The relational algebra queries are not unique. This query
can be rewritten as follows:

π title (σ numOfCredits = 3 or numOfCredits = 4 (Course))

The equivalent SQL statement is
select title

from Course

where numOfCredits = 3 or numOfCredits = 4;

2.4.2 Relational Calculus

When you write the relational algebra queries, you use the
set operators and relational operators to specify a sequence
of actions that generates the result. Relational algebra is
a procedural language in the sense that it specifies the
procedure for obtaining the queries. Another relational
language is called the relational calculus. The relational
calculus is based on the predicate calculus. It is a non-
procedural language, in the sense that it specifies what the
result is, but not how to obtain the result. There are
several forms of relational calculus. This section
introduces the tuple relational calculus.

The tuple relational calculus uses tuple variables to
references the tuples in the relations and uses the Boolean
expressions to specify the conditions for the tuples. A
query in the tuple relational calculus is expressed as

{result | boolean-condition}

where result is a set of tuples such as the Boolean-
condition is true.

Here are three examples to demonstrate the relational
calculus.

1. Display the course title with four credit hours.

{t.title | t ∈ Course and t.numOfCredits = 4}

Here t is a tuple variable in the Course table, as shown in
Figure 2.14. The result of the query is t.title such that t
∈ Course and t.numOfCredits = 4 is true, i.e. for every
tuple variable t in Course, if t.numOfCredits is 4, t.title
is selected in the result.

© Copyright Y. Daniel Liang, 2005
15

Course Table

courseId subjectId number title numOfCredits

11111 CSCI 1301 Introduction to Java I 4
11112 CSCI 1302 Introduction to Java II 3
11113 CSCI 3720 Database Systems 3
11114 CSCI 4750 Rapid Java Application 3
11115 MATH 2750 Calculus I 5
11116 MATH 3750 Calculus II 5
11117 EDUC 1111 Reading 3
11118 ITEC 1344 Database Administration 3

 t

 t.title t.numOfCredits

Figure 2.14

The tuple variable references to a tuple in the relation.

2. Display all the departments in the Science college.

{d.name | d ∈ Department and ∃c(c ∈ College
 and d.collegeId = c.collegeId and c.name = ‘Science’)}

Here d is a tuple variable in the Department table and c is
a tuple in the College table, as shown in Figure 2.15. The
result of the query is d.name such that for every tuple
variable d in Department, there exists a tuple variable c in
College such that d.collegeId = c.collegeId and c.name is
‘Science’. The mathematical symbol ∃ expresses the meaning
of existence of such a tuple in the College table.

deptId name headed collegeId

CS Computer Science 111221115 SC
MATH Mathematics 111221116 SC
CHEM Chemistry 111225555 SC
EDUC Education 333114444 EDUC
ACCT Accounting 333115555 BUSS

collegeId name since deanId

SC Science 1-AUG-1930 999001111
NURS Nursing 1-AUG-1960 777001111
EDUC Education 1-AUG-1935 888001111
BUSS Business 1-AUG-1955 666001111

c.collegeId

d

c

c.name d.name d.collegeId

Figure 2.15

d.name is in the result if there exists c such that c.name
is Science and c.collegeId is the same as d.collegeId.

3. Display the course title offered by the CS department.

{c.title | c ∈ Course and ∃s(s ∈ Subject
 and s.subjectId = c.subjectId and s.deptId = ‘CS’)}

Here c is a tuple variable in the Course table and s is a
tuple in the Subject table, as shown in Figure 2.16. The

© Copyright Y. Daniel Liang, 2005
16

result of the query is c.title such that for every tuple
variable c in Course, there exists a tuple variable s in
Subject such that c.subjectId = s.subjectId and s.deptId is
‘CS’.

subjecteId name startTime deptId

CSCI Computer Science 1-AUG-1980 CS
ITEC Information Technology 1-JAN-2002 CS
MATH Mathematics 1-AUG-1935 MATH
STAT Statistics 1-AUG-1980 MATH
EDUC Education 1-AUG-1980 EDUC

Course Table

Subject Table

courseId subjectId number title numOfCredits

11111 CSCI 1301 Introduction to Java I 4
11112 CSCI 1302 Introduction to Java II 3
11113 CSCI 3720 Database Systems 3
11114 CSCI 4750 Rapid Java Application 3
11115 MATH 2750 Calculus I 5
11116 MATH 3750 Calculus II 5
11117 EDUC 1111 Reading 3
11118 ITEC 1344 Database Administration 3

c

s

Figure 2.16

c.title is in the result if there exists s such that
s.deptId is CS and c.subjectID is the same as s.subjectId.

Chapter Summary

This chapter introduced the relational data model – data
structures, integrity, and query language. You learned the
characteristics of relations, superkeys, keys, candidate
keys, primary keys, and foreign keys. You learned the three
types of integrity constraints – domain constraints, primary
key constraints, and foreign key constraints. You also
learned two theoretical query languages – relational algebra
and relational calculus.

Review Questions

2.1 What are the characteristics of a relation?
2.2 What are superkeys, candidate keys, and primary keys?
How do you create a table with a primary key?
2.3 What is a foreign key? How do you create a table with a
foreign key?
2.4 Can a relation have more than one primary key or foreign
key?
2.5 Does a foreign key need to be a primary key in the same
relation?
2.6 Does a foreign key need to have the same name as its

© Copyright Y. Daniel Liang, 2005
17

referenced primary key?
2.7 Can a foreign key value be null?
2.8 What are the operators on relations?
2.9 Suppose relation R has m tuples and relation S has n
tuples, answer the following questions:

a. How many tuples are in R × S?
b. How many columns are in R × S?
c. Suppose R and S have a common attribute, T is the

natural join of R and S on the common attribute. What
is the maximum number of tuples in T and what is the
minimum number of tuples in T? How many columns are in
T?

d. Suppose the common attribute is the primary key in R,
what is the maximum number of tuples in T and what is
the minimum number of tuples in T?

e. Suppose the common attribute in S is a foreign key
that references the primary key in R. What is the
number of tuples in T?

Exercises

2.1 Write the following queries using relational algebra and
relational calculus, respectively. (The queries use the
Subject and Course tables in Figure 2.1)

a. Find the subject start time for the subjectId CSCI.
b. Find the course titles in the CS department.
c. Find the course titles in the CS department excluding

the course whose ID is 11111.
d. List the course titles in both MATH and CSCI subjects.

© Copyright Y. Daniel Liang, 2005
18

