
 

CHAPTER 

3 

Database Design  

Objectives 
• To use ER modeling to model data. 

• To identify entities and their relationships. 

• To describe entities using attributes, multivalued 
attributes, derived attributes, and key attributes. 

• To know the difference between strong entities and 
weak entities. 

• To use EER to model inheritance relationships. 

• To become familiar with graphical notations in ER and 
EER. 

• To learn how to translate ER/EER into relation 
schemas. 

• To understand functional dependencies and use normal 
forms to further reduce redundancy. 

3.1 Introduction 
 
Before you can store data into the database, you have to 
define tables. How tables are defined will impact the 
database quality. For example, suppose the Department table 
is defined as shown in Figure 3.1, obviously the table 
stores the college information redundantly. Redundancy 
causes many problems. First, it takes additional space to 
store redundant data. Second, it slows down the update 
operation. For example, if the deanId for the Science 
college is changed, the DBMS has to exhaustively search for 
all the records to change the deanId for the Science 
college. Third, if the special education department is 
deleted, the information on the Education college is deleted 

 

© Copyright Y. Daniel Liang, 2005 
1 



 

too since the information on Education college appears only 
in one record. The root cause of all these problems is that 
the two entities Department and College are mixed into one 
table. This problem can be avoided if the table is derived 
from a sound database design methodology.  
 

Department Table 

deptId                 name                         headId          collegeId        name                 since                deanId 

CS                       Computer Science   111221115    SC                  Science         1-AUG-1930      999001111 
MATH                Mathematics            111221116    SC                  Science         1-AUG-1930     999001111  
CHEM                Chemistry                111225555    SC                  Science          1-AUG-1930     999001111 
SPED                  Special Education   222223333    EDUC             Education      1-AUG-1935     888001111 
    

 
 
Figure 3.1 

The department and college information are mixed into one 
table. 

A proven sound methodology for database design is the 
Entity-Relationship (ER) modeling, which was first proposed 
by Peter Chen in his 1976 paper “Entity-Relationship Model: 
Toward a Unified View of Data.” This modeling approach has 
been widely used for designing logical database schemas. The 
first step to design a database is to understand the system, 
know how the system works, and discover what data is needed 
to support the system, then obtain an ER model and translate 
the model into the relation schemas, and finally improve the 
relation schemas using normal forms, as shown in Figure 3.2.  
 
 

Interact with the 
user to 

understand the 
System 

ER Modeling
Translate the ER 

model into 
relation schemas

Improve Relation 
Schemas Using 
Normal Forms 

 
Figure 3.2 

An ER diagram can be used to design logical database 
schemas. 

 
3.2 Entity-Relationship Modeling 
 
An ER model is a high-level description of the data and the 
relationships among the data, rather than how data is 
stored. It focuses on identifying the entities and the 
relationship among the entities. 
 
3.2.1 Entities and Attributes 
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An entity is a distinguishable object in the enterprise. An 
entity has attributes that describe the properties of the 
entity. For example, a course is an object in the student 
information system. The course subject, number, name, number 
of credit hours, and prerequisites are the attributes for 
the course. All the courses have same type of attributes. A 
collection of entities of the same attributes is called an 
entity set. An entity class (or type) defines an entity set. 
An entity class is like a Java class except it does not have 
methods. An entity is also known as an entity instance of 
its entity class. 
 
3.2.1.1 Key Attributes 

Since each entity is distinct, no two entities can have the 
same values on the attributes. Each entity class has an 
attribute or a set of attributes that can be used to 
uniquely identify the entities. In case there are several 
keys in the entity class, you can designate one as the 
primary key. For example, you can designate the course title 
to be the key, assume that every course has a different 
title. 
 
3.2.1.2 Composite Attributes 

A composite attribute is an attribute that is composed of 
two or more sub-attributes. For example, the Student entity 
class has the address attribute that consists of street, 
city, state, and zipcode.  
 
3.2.1.3 Multivalued Attributes 

A multivalued attribute is an attribute that may consist of 
a set of values. For example, the Course entity class has 
the prerequisites attribute. A course may have several 
prerequisites. Therefore, the prerequisites attribute is a 
multivalued attribute. 
 
3.2.1.4 Derived Attributes 

A derived attribute is an attribute that can be derived or 
calculated from the database. A derived attribute should not 
be stored in the database. For example, you may add an 
attribute named numOfPrerequisites to the Course entity 
class. This attribute can be calculated from the 
prerequisites attribute. 
 
3.2.2 ER Diagrams 
 
ER modeling can be described using diagrams. Diagrams make 
the ER models easy to understand and simple to explain. 
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Figure 3.3 shows an ER diagram for the Course entity class 
and its attributes. An entity class is represented by a 
rectangle, an attribute by oval, multivalued attribute by an 
oval of double borders, and derived attribute by dashed 
oval. The primary key attribute(s) are underlined. Figure 
3.4 shows an ER diagram for the Student entity class, where 
address is a composite attribute. 
 
 
 

Course 

courseNumber title numOfCredits numOfprereqsprerequisites

 
Figure 3.3 

An ER diagram is used to describe the Course entity class 
and its attributes. 

 
 

Student 

ssn name major address 

firstName mi lastName street city state 

age 
birthDate

 
Figure 3.4 

An ER diagram is used to describe the Student entity class 
and its attributes. 

3.2.2 Relationships and Relationship Classes 
 
An ER model discovers entities and identifies the 
relationship among the entities. A relationship between two 
entities represents some association between them. For 
example, a student taking a course represents an enrollment 
relationship between the student and the course. A 
collection of same type of relationships forms a 
relationship set. A relationship class (or type) defines a 
relationship set. A relationship is also known as a 
relationship instance of its relationship class. 
 
To identify relationships in the enterprise, watch for verbs 
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in the phrases. For example, the verbs “works” in the phrase 
“a faculty works in department” implies an employment 
relationship between a faculty and a department. The 
entities are identified from the nouns.  
 
Relationships can have attributes just like the entities. 
For example, the enrollment relationship may have an 
attribute to record when a student is registered for the 
course. 
 
3.2.2.1 Cardinality Constraints on Relationships 
 
A relationship class establishes the relationships between 
the entities in the entity classes. An entity in one entity 
class may be associated with one or more entities in the 
other entity class. A cardinality constraint on a 
relationship class puts restrictions on the number of 
relationships in which an entity may participate. There are 
four basic types of constraints: 
 
One-to-one: An entity in either entity class may participate 
in at most one relationship. For example, a computer user 
account is assigned to one user and a user can have only one 
account. So, the relationship between User and Account is 
one-to-one, as shown in Figure 3.5. The marriage 
relationship is one-to-one too.  
 
 

 

User Has Account

 
 
Figure 3.5 

The relationship between User and Account is one-to-one. 

One-to-many: An entity in the first entity class may 
participate in many relationships, but the entity in the 
second class may participate in at most one. For example, 
the relationship between Department and Faculty is one-to-
many, because one department may have many faculty and a 
faculty can be in only one department. Figure 3.6 
illustrates the constraint. 
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Department Has Faculty 

 

Figure 3.6 

The relationship between Department and Faculty is one-to-
many. 

Many-to-one: The same as one-to-many, but the entity sets 
are reversed.  
 
Many-to-many: An entity in both entity sets may participate 
in many relationships. For example, a student can take many 
courses, and a course can be taken by many students. Figure 
3.7 illustrates such constraint. 
 
 

 

Student Take Course 

 

Figure 3.7 

The relationship between Student and Course is many-to-many. 

 
3.2.2.2 Participation Constraints 
 
The participation constraint specifies whether every entity 
in an entity class participates in a relationship. If so, it 
is called a total participation, otherwise it is called a 
partial participation. For example, the participation of 
Faculty in the employment relationship with Department is 
total, because every faculty in the Faculty entity class 
must work for a department. The participation of Student in 
the enrollment relationship with Course may be partial, 
because not every student takes a course. A student may take 
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a semester off. 
 
Figure 3.8 shows an ER diagram that describes the 
relationships among Student, Course and Subject. A 
relationship class is represented using a diamond. The 
constraints on the relationships are denoted using 1 for one 
and m for many. A total participation is denoted using 
double lines. 
 
 

Student Course Enrollment Subject BelongsTo
m 1m m

dateEnrolled 

 
Figure 3.8 

An ER diagram is used to describe the relationships. 

3.2.2.3 Ternary or n-ary Relationships 
 
The relationships discussed in the preceding sections are 
binary relationship between two entity classes. It is 
possible that a relationship may involve three or more 
entity classes. For example, “a company provides a product 
for a project” involves three entities Company, Product and 
Project, as shown in Figure 3.9. A company may provide many 
products to many projects. A product may be provided by many 
companies for many projects. A project may use many products 
from many companies.  
 
 

Company Product 

Supply 

Project 

m 

mm 

name 

stockSymbol 

address 
name 

color
weight
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description

dateSupplied 

 
Figure 3.9 

An ER diagram can be used to describe a ternary 
relationship. 

“A company provides a product for a project” is a true 
ternary relationship, because Company, Product and Project 
are all associated together and cannot be separated. Some 
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ternary relationships may be false and should be actually 
represented using binary relationships. For example, “A 
student takes a course taught by a faculty” could be 
erroneously represented using a ternary relationship 
involving Student, Course and Faculty. This is wrong because 
a student and a faculty are not directly associated. The 
sentence “A student takes a course taught by a faculty” is 
equivalent to “A student takes a course and a course is 
taught by a faculty.”  
 
3.2.3 Weak Entities and Identifying Relationship Classes 
 
An entity is called a weak entity if its existence is 
dependent on other entities. The other entities are called 
owner entities. In contrast, a regular entity is called a 
strong entity. For example, a faculty has dependents. 
Dependent is a weak entity class that is dependent on its 
owner entity class Faculty. A relationship between Faculty 
and Dependent is called an identifying relationship for the 
weak entity. Figure 3.10 shows an ER diagram that describes 
Faculty and Dependent and their relationship. A weak entity 
class is represented by a rectangle of double borders and a 
diamond of double borders represents its identifying 
relationship class. Since every weak entity must be 
associated with a strong entity, the weak entity class is a 
total participation of the relationship.  
 
 

Faculty 
m 1 

has Dependent 

ssn 

name

birthDate 

sex 
 

 
Figure 3.10 

Dependent is a weak entity that is dependent on Faculty. 

A weak entity cannot have a key. If an entity has a key, it 
must be classified as a strong entity set. Suppose Dependent 
has the attributes ssn, name, birthDate, and sex. If each 
dependent has a SSN, ssn can be used as the key for the 
Dependent class. In this case, Dependent becomes a strong 
entity. It is possible that a dependent may not have a SSN. 
For example, a newborn may not have a SSN. In this case, 
Dependent does not have a key, because two dependents may 
have the same value on name, birthDate, and sex. Dependent 
has no keys and is a weak entity class. Though Dependent 
does not have a key, each dependent is distinct and can be 
identified through its identifying relationship with its 

© Copyright Y. Daniel Liang, 2005 
8 



 

owner entities. The key in the Faculty class along with the 
name attribute in the Dependent class can form a key to 
uniquely identify dependents. The name attribute is referred 
to as a partial key. In the ER diagram, a partial key is 
underlined by a dashed line, as shown in Figure 3.10. 
 
3.2.4 ER Diagram for a Student Information System 
 
Now you can use the ER diagram to describe a student 
information system as shown in Figure 3.11. Figure 3.12 
summarizes the graphical notations for ER diagrams. Figure 
3.11 describes the strong entity classes Student, Course, 
Subject, Department, College, and Faculty, and the weak 
entity classes Transcript and Dependent, and the 
relationships among these entities classes. The ER diagram 
is self-describing and easy to understand. The ER diagram 
describes a hypothetical student information system and it 
is not intended to give a complete description of the 
system. The book will use this database in the examples. 
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Figure 3.11 

A student information system is represented using an ER 
diagram. 

 
 Strong Entity Class 

Weak Entity Class 

Relationship Class 

Identifying 
Relationship Class 

Total Participation 
Relationship  

Partial Participation 
Relationship  

 Attribute 

 Key Attribute 

 Derived Attribute 

 Multivalued Attribute 

 

   Composite Attribute 

 Partial Key 
Attribute 

 
 
 
Figure 3.12 

An ER diagram uses graphical notations to describe entities, 
attributes, and relationships. 

NOTE: The ER model is not unique. There are many 
ways to design an ER model. For example, you may 
consider registration as a weak entity set. So 
the relationship among Student, Registration, 
and Course can be drawn as shown in Figure 3.13. 
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m 1

ssn name address 

lastName 

mi 
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email 
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Figure 3.13 
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Student and Course can alternatively be described through 
the Registration weak entity class.  

 
3.3 Translating ER Models to Relation Schemas 
 
Once an ER model is created, you can translate it into 
relation schemas. This section uses the student information 
system to demonstrate the translation guidelines. 
 
3.3.1 Translating Strong Entity Classes 
 
For each strong entity class in the ER diagram, create a 
relation schema. Choose the primary key of the entity class 
as the primary key of the relation. The attributes are 
translated in the following sections.  
 
3.3.2 Translating Simple Attributes 
 
For each simple attribute, create a field in the relation. 
For example, to translate simple attributes ssn, phone, 
birthdate, and email in the Student entity class, create 
fields ssn, phone, birthdate and email in the Student table. 
You may argue that birthdate is a composite attribute 
because it consists of day, month and year. However, it is a 
bad idea to separate them. SQL has a time type (equivalent 
to Oracle’s date type) that can be used to represent date 
and time. You can extract day, month and year from a time or 
date type value. 
 
3.3.3 Translating Composite Attributes 
 
For each composite attribute, create a field for each simple 
attribute in the composite attribute. For example, to 
translate the composite attribute name in the Student entity 
class, create fields lastName, mi, and firstName in the 
Student table. The Student entity class can be translated as 
follows: 
 

Student(ssn, lastName, mi, firstName, phone, email, birthDate,  
  street, city, state, zipcode) 

 
3.3.4 Translating One-to-Many Relationships 
 
For each one-to-many relationship type between entity 
classes S and T, select one whose cardinality is many, say 
T, as target. Add the primary key attributes of S (whose 
cardinality is 1) to T as a foreign key. Add the simple and 
composite attributes of the relationship class into T. For 
example, WorksIn is a one-to-many relationship between 
Department and Faculty. To translate it, add the primary key 
attributes in the Department table to the Faculty table as a 
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foreign key. Add the startTime attribute in the WorksIn 
relationship class to the Faculty table. The Faculty schema 
is as follows: 
 

Faculty(ssn, lastName, mi, firstName, phone, email, office, 
  rank, deptId, startTime) 

 
You might wonder why it is a good guideline to add the 
primary key of S and the attributes of the relationship 
class to T. The answer is that this reduces redundancy. If 
you add the primary key of T and the attributes of the 
relationship class to S, there would be more redundancy in 
S. For example, suppose you add the primary key of Faculty 
and startTime to Department, a sample Department table is 
shown in Figure 3.14. In this Department table, for every CS 
faculty, the CS department information is stored. This is 
obviously redundant.  
 

deptId        name  headId    collegeId       facultySsn     startTime 
 
CS              Computer Science      111221115    SC               111221111    12-OCT-86 
CS              Computer Science      111221115    SC               111221115    01-JAN-00 
CS              Computer Science      111221115    SC               111221119    01-JAN-94 
MATH       Mathematics               111221116    SC               111221110    11-OCT-76 
MATH       Mathematics               111221116    SC               111221112    13-AUG-76 
MATH       Mathematics               111221116    SC               111221116    13-AUG-76 
MATH       Mathematics               111221116    SC               111221112    01-JAN-00 
… 
… 

A Department Table with Redundancy 

 
Figure 3.14 

Department information is stored redundantly in the 
Department table.  

 
3.3.4 Translating One-to-One Relationships 
 
For each one-to-one relationship type between entity classes 
S and T, select one with less non-participating entities, as 
T, as the target. Add the primary key of S to T as a foreign 
key and add the simple and composite attributes of the 
relationship into T. For example, Owns is a one-to-one 
relationship between Student and Account. Since every 
account belongs to a student, you should select Account as 
the target. Add the primary key of Student to Account as a 
foreign key and add the since attribute to the Account 
relation. The Account schema is as follows: 
 

Account(username, password, ssn, since) 

 
So why is it a good guideline to select the entity class 
with less non-participating entities as the target? To 
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answer the question, consider selecting Student as the 
target for translating the Owns relationship. Add the 
primary key username of the Account and the attribute since 
of the Owns relationship to the Student table. Figure 3.15 
shows a sample new Student table. Clearly, the new Student 
table has many null values because not every student owns an 
account. If you follow the guideline to translate the 
relationship, you can avoid having too many null values. 
 

ssn                   firstName   mi  lastName      username             since 
 
444111110 Jacob   R  Smith      jsmith      9-APR-1985 

444111111 John    K  Stevenson  null        null 

444111112 George  R  Heintz     gheintz     1-SEP-1986 

444111113 Frank   E  Jones      null        null 

444111114 Jean    K  Smith      null        null 

444111115 Josh    R  Woo        null        null 
… 
…    

A Student Table with Many null values 

 
Figure 3.15 

The Student table contains many null values. 

3.3.5 Translating Many-to-Many Relationships 
 
For each many-to-many relationship type R between entity 
classes S and T, create a new relation schema named R. Let 
S(k) and T(k) denote the primary keys in S and T, 
respectively. Add S(k) and T(k) into R and add the simple 
and composite attributes of the relationship class into R. 
The combination of S(k) and T(k) is the primary key in R. 
Both S(k) and T(k) are the foreign keys in R. For example, 
Enrollment is a many-to-many relationship between Student 
and Course. Create a new relation named Enrollment whose 
attributes include the keys from Student and Course and the 
attributes dateRegistered and grade. The Enrollment schema 
is as follows: 
 

Enrollment(ssn, courseId, dateRegistered, grade) 

 
3.3.6 Translating n-ary Relationships 
 
For each n-ary relationship for n > 2, create a new relation 
schema. Add the primary key of each participating entity 
class into the relation schema as foreign keys. The 
combination of all these foreign keys forms the primary key 
in the new relation. Add all simple and composite attributes 
of the n-ary relationship class into the new relation. For 
example, the ternary relationship in Figure 3.9 can be 
translated into the following schema: 
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Supply(companyName, productName, projectName, dateSupplied) 

 
3.3.7 Translating Weak Entity Classes 
 
For each weak entity class W, create a new relation schema 
named W. Add the primary key of its owner entity class into 
W as a foreign key and add all simple and composite 
attributes of W into the relation. The primary key of the 
relation is the combination of the primary key from its 
owner relation and the partial key, if any. For example, 
Dependent is a weak entity class and its owner class is 
Faculty. So Dependent can be translated as follows: 
 

Dependent(ssn, lastName, mi, firstName, sex, birthDate) 

 
3.3.8 Translating Multivalued Attributes 
 
For each multivalued attribute, create a new relation 
schema. Let R be the relation schema that represents the 
entity class or relationship class that contains the 
multivalued attribute. Add the multivalued attribute into 
the schema and add the primary key attributes of R. The 
combination of all attributes forms the primary key of the 
new relation. For example, to translate the multivalued 
attribute prerequisites in Course, create a new relation 
schema named Prerequisite as follows: 
 

Prerequisite(courseId, prerequisiteCourseId) 

 
3.4 Enhanced Entity-Relationship Modeling  
 
The ER modeling presented in the preceding section is 
sufficient to model simple data relationships. A large 
database system may contain many entity classes and an 
entity may belong to several entity classes or share 
properties with entities from different classes. These 
relationships correspond to class inheritance in the object-
oriented programming. To accurately represent these 
relationships, an extension of ER modeling, called Enhanced 
ER modeling (EER), was introduced. 
 
3.4.1 Representing Inheritance Relationships 
 
Inheritance models the is-a relationship between two entity 
classes. “An entity class A is a special case of an entity 
class B” establishes an is-a relationship. A is called a 
subclass and B is called a superclass. There are two ways to 
discover inheritance relationships—specialization and 
generalization. Specialization is the process of defining a 
set of subclasses for a superclass. Generalization is the 
process of recognizing two or more classes have common 
features so that you can generalize these classes to create 
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a superclass. 
 
For example, a faculty may be part-time or full-time, so you 
can define two subclasses PartTimeFaculty and 
FullTimeFaculty. You could use the ER diagram in Figure 3.16 
to represent their relationships. 
 
 

PartTimeFaculty Is-a Faculty Is-a FullTimeFaculty

 
Figure 3.16 

PartTimeFaculty and FullTimeFaculty are special cases of 
Faculty. 

The problem with the ER diagram in Figure 3.16 is that it 
does not describe the relationships between PartTimeFaculty 
and FullTimeFaculty. They are both subclasses of Faculty. A 
faculty can belong to only one subclass, either full-time or 
part-time, cannot be both. A more appropriate notation is 
shown in Figure 3.17, where PartTimeFaculty and 
FullTimeFaculty are connected through a circle. The letter d 
inside the circle denotes the subclasses are disjoint. A cup 
sign facing the superclass is used to represent inheritance.  

 

 

PartTimeFaculty 

Faculty 

FullTimeFaculty

d

ssn name phone

lastName lastName firstName

sickLeaveHourssalarypayRate 

facultyType 

 
Figure 3.17 

PartTimeFaculty and FullTimeFaculty are disjoint subclasses 
of Faculty. 

The Faculty superclass may use an attribute facultyType to 
determine whether a faculty is a part-time faculty or a 
full-time faculty. Such an attribute is referred as a 
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defining attribute. 
 
The double-line connecting between Faculty and the circle 
implies total participation by Faculty. Each faculty must be 
either part-time or full-time. It is possible for a partial 
participation to exist in the inheritance relationship, 
which allows an entity not to belong to any subclasses. For 
example, an instructor may be neither full-time faculty nor 
part-time faculty as shown in Figure 3.18. 
 
 

PartTimeFaculty 

Instructor 

FullTimeFaculty

d 

 
Figure 3.18 

PartTimeFaculty and FullTimeFaculty are instructors, but an 
instructor may be neither part-time faculty nor full-time 
faculty. 

3.4.2 Representing Overlapping Relationships 
 
If the subclasses are not constraint to be disjoint, their 
sets of entities may overlap. For example, you may consider 
an honors course and a distance-learning course as 
subclasses of Course. An honors course may be a distance-
learning course too, so the HonorCourse and 
DistanceLearningCourse classes may overlap. To denote 
overlapping relationship, put the letter o inside the 
circle, as shown in Figure 3.19. 
 
 

HonorCourse 

Course 

DistanceLearningCourse 

o 

 
Figure 3.19 

HonorCourse and DistanceLearningCourse are special cases of 
Course, but they may overlap. 

3.4.3 Representing Multiple Specialization Hierarchies 
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An entity may belong to more than one specialization 
hierarchies. For example, if you wish to further classify 
faculty by their ranks and by their administrative 
functions, you could define AssistantProf, AssociateProf, 
and FullProf, and DepartmentChair, as shown in Figure 3.20. 
 
 

PartTimeFaculty 

Faculty 

FullTimeFaculty 

d 

DepartmentChair AssistantProf

d 

AssociateProf FullProf

 
Figure 3.20 

An entity class may have multiple specializations. 
 

CAUTION: A common mistake is to over-specialize 
classes. When defining subclasses, check if a 
subclass has distinctive attributes that are not 
shared by other classes. In Figure 3.20, 
AssistantProf, AssociateProf, and FullProf don’t 
have their own distinctive attributes. You could 
simply add a rank attribute in the Faculty class 
to describe a faculty’s rank. 

3.4.4 Representing Multiple Inheritance 
 
Multiple inheritance means that a subclass may be derived 
from two or more superclasses. Multiple inheritance can be 
described in EER. For example, a department chair is both a 
faculty and an administrator, as shown in Figure 3.21. 
 
 

Faculty 

DepartmentChair 

Administrator 

 
Figure 3.21 

DepartmentChair is both a faculty and an administrator. 

3.4.5 Translating Inheritance Relationships into Relation 
Schemas 
 
There are three options for translating inheritance 
relationships to relation schemas.  
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Option 1: For each superclass P, create a relation schema 
named P and add all its simple and composite attributes to 
the schema. For each specialization of P that has a defining 
attribute, add that attribute to the relation schema. For 
each subclass of P, create a relation schema, add the 
primary key of P into this new relation as a foreign key. In 
the case, the subclasss has multiple superclasses, declare 
the primary key of the subclass to be the combination of all 
the foreign keys. For example, the EER diagram in Figure 
3.18 can be translated into the following three relation 
schemas: 
 

Faculty(ssn, lastName, mi, firstName, phone, facultyType) 
PartTimeFaculty(ssn, payRate) 
FullTimeFaculty(ssn, salary, sickLeaveHours) 

 
Option 2: For each superclass P, create a relation schema 
named P and add all its simple and composite attributes to 
the schema. For each specialization of P that has a defining 
attribute, add that attribute to the relation schema. For 
each subclass of P, add its simple and composite attributes 
to P. For example, the EER diagram in Figure 3.18 can be 
translated into the following relation schema: 
 

Faculty(ssn, lastName, mi, firstName, phone, facultyType,  
  payRate, salary, sickLeaveHours) 

 
The drawback of this option is null values on payRate for 
full-time faculty and null values on salary and 
sickLeaveHours on full-time faculty. The advantage is no 
join operation is needed to obtain information pertaining to 
part-time or full-time faculty. 
 
This option is not suitable for multiple inheritance where a 
subclass has multiple superclasses. 
 
Option 3: For each subclass S, create a relation schema 
named S. Add all simple and composite attributes of the 
subclass and its superclass to the schema. The primary key 
of the new schema is the combination of all keys from the 
superclasses in case of multiple inheritance. For example, 
the EER diagram in Figure 3.18 can be translated into the 
following relation schema: 

 
PartTimeFaculty(ssn, lastName, mi, firstName, phone, payRate) 
FullTimeFaculty(ssn, lastName, mi, firstName, phone,  
  salary, sickLeaveHours) 
 

This option is not suitable for overlapping specialization, 
because it would cause redundancy. For example, if this 
option is used to translate the EER in Figure 3.19, a course 
may be stored in both HonorCourse and DistanceLearningCourse 
relations.  

© Copyright Y. Daniel Liang, 2005 
18 



 

 
3.5 Normalization  
 
Figure 3.1 illustrated the redundancy problem in the 
Department table. Using the ER modeling, this problem cannot 
happen because Department and College are two entity classes 
and they are translated into two tables. ER modeling can fix 
many problems like the one demonstrated in Figure 3.1, but 
redundancy may still exist in the tables translated from the 
ER diagrams. For example, the Student table shown in Figure 
3.22 stores the city and state information redundantly for 
the same zipcode. 
 

Student Table 

ssn                  lastName    mi   firstName  phone             email                 birthDate   street                 city             state    zipcode   

314111111     Smith          K    John           9125441111   jks@acm.org    3/11/79      100 Main          Savannah    GA     31411 
314111112     Carter          G    Jim            9125441112   jgc@acm.org    4/10/78      8 Hunters          Savannah    GA     31411 
314111113     Jones           K    Tim           9125441113    tkj@acm.org    5/15/79      10 River St.       Savannah    GA     31411 
314111114     Frank           Z    Tom          9125441114    tzf@acm.org    3/15/78      81 Oak St.         Savannah    GA     31411 
314111115     Frew            P    Kathy        9125441115    kpf@acm.org    7/19/78     1 Moon St.        Savannah    GA     31411 

 
Figure 3.22 

The Student table stores city and state redundantly for the 
same zipcode. 

This section introduces normalization—a process that 
decomposes the relations with redundancy into the smaller 
relations that satisfy certain properties. These properties 
are characterized into normal forms. A relation is said to 
be in a normal form if it satisfies the properties defined 
by the normal form. Four commonly used normal forms are 
introduced in this section: first normal form (1NF), second 
normal form (2NF), third normal form (3NF), and Boyce-Codd 
normal form (BCNF). Each normal form ensures that a relation 
has certain quality characteristics. Normal forms are 
defined using functional dependencies. The following section 
introduces functional dependencies. 
 
3.5.1 Functional Dependencies 
 
The problem in the Student table in Figure 3.22 is that city 
and state are determined by zipcode. This can be 
characterized using function dependencies. 
 
A set of attributes Y is functionally dependent on a set of 
attributes X if the value of X uniquely determines the value 
of Y. In other words, for any two tuples in R, if their X 
values are the same, then their Y values must be same. X is 
called a determinant. Equivalently, you can also say that X 
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functionally determines Y. This functional dependency can be 
described in the following expression: 
 
X  Y 
 
So the relationship among city, state, and zipcode is 
zipcode  city state since for every two tuples with the 
same zipcode, their city and state values are the same. 
 

NOTE: A functional dependency in a relation must 
be valid for all the instances of the relation 
at any time. Once a functional dependency is 
specified, you need to make sure that the 
dependency is not violated at any time. The DBMS 
can enforce the primary key, foreign key and 
domain constraints, but it cannot enforce 
functional constraints. You can write the 
triggers to enforce functional dependencies. 
Triggers will be introduced in Appendix G, 
“Database Triggers.” 

 
3.5.1.1 Inference Rules 

Given a set of functional dependencies, you can derive new 
functional dependencies using the following inference rules: 
 
Reflexivity Rule: If X ⊇ Y, then X  Y.  
Augmentation Rule: If X  Y, then XZ  YZ.  
Union Rule: If X  Y and X  Z, then X  YZ.  
Decomposition Rule: If X  YZ, then X  Y and X  Z. 
Transitivity Rule: If X  Y and Y  Z, then X  Z.  
Pseudo-transitivity Rule: If X  Y and WY  Z, then WX  
Z.  
 
These rules are intuitive and easy to prove. Here are the 
examples to prove the reflexivity rule and the pseudo-
transitivity rule. For any two tuples t1 and t2, if t1[X] = 
t2[X], then t1[Y] = t2[Y] since Y is a subset of X. 
Therefore, X  Y.  
 
To prove the union rule, consider two tuples t1 and t2 with 
t1[X] = t2[X]. Since X  Y, t1[Y] = t2[Y]. Since X  Z, 
t1[Z] = t2[Z]. Therefore, t1[YZ] = t2[YZ]. 
 
To prove the pseudo-transitivity rule, consider two tuples 
t1 and t2 with t1[X] = t2[X]. Since X  Y, WX  WY (by the 
augmentation rule). Since WX  WY and WY  Z, WX  Z (by 
the transitivity rule). 
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3.5.1.2 Minimum Covers 

There are many functional dependencies in a relation. For 
example, in the Student table in Figure 3.22, you may 
identify the following functional dependencies: 
 
ssn  lastName, mi, firstName 
ssn  zipCode 
ssn  phone, email 
ssn  birthDate 
ssn  street 
ssn  city, state 
ssn  ssn 
lastName  lastName 
 
Some of the functional dependencies such as ssn  ssn and 
lastName  lastName are trivial and some can be derived 
from the others using the inference rules. A functional 
dependency X  Y is trivial if both sides contain common 
attributes.  
 
A minimum cover is a set of functional dependencies F that 
satisfies the following conditions: 
 

• Every dependency has a single attribute for its right-
hand side. 

• For every dependency X  A, there is no dependency Y 
 A for Y ⊂ X. 

• No dependency in F can be derived from the other 
dependencies in F. 

 
For example, the following is the minimum cover for the 
Student table. 
 
ssn  lastName 
ssn  mi 
ssn  firstName 
ssn  phone 
ssn  email 
ssn  zipCode 
ssn  birthDate 
ssn  street 
zipCode  city 
zipCode  state 
 
3.5.1.3 Finding keys Using Functional Dependencies 

Typically, database designers first identify a set of 
functional dependencies from the semantics of the attributes 
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in a relation. Additional functional dependencies can be 
derived using the inference rules. 
 
You can now define superkey and candidate keys using the 
functional dependencies. A superkey is a set of attributes 
that determines all attributes in the relation. A candidate 
key is a superkey such that no proper subset of it is 
another superkey. An attribute is called a key attribute if 
it belongs to a candidate key. 
 
A set of attributes, X, may determine many attributes in a 
relation. The closure of a set of attributes denoted by X+ 
is the set of the attributes determined by X. If X is a 
superkey, then X+ consists of all attributes in the 
relation. 
 
You can use the inference rules to find all candidate keys 
in a relation. For example, Let R be a relation schema with 
attributes A, B, C, D, E, F, and G and {A  CD, B  EF, E 
 G} is a set of functional dependencies in R. To find a 

candidate key is to find a minimum set of attributes, K, 
such that K  R. You only need to consider the attributes 
on the left side of the functional dependency expression, 
because only these attributes can be key attributes. Here is 
the process of identifying the candidate keys. 
 
Consider attribute A, A  ACD. 
Consider attribute B, B  BEFG. 
Consider attribute E, E  EG. 
Consider combining A and B, AB  ABCDEFG. Therefore, AB is 
a candidate key. 
Consider combining A and E, AE  ACDEG. 
Consider combining B and E, BE  BEFG. 
 
Based on the preceding process, AB is the only candidate 
key. 
 
3.5.2 First Normal Form (1NF) 
 
A relation is in the first normal form (1NF) if every 
attribute value in the relation is atomic. By definition, a 
relation is already in the 1NF. 
 
3.5.3 Second Normal Form (2NF) 
 
A relation is in the second normal form (2NF) if it is in 
1NF and no non-key attribute is partially dependent on any 
candidate key. An attribute A is partially dependent on a 
set of attribute X, if there exists an attribute B in X such 
that X – {B}  A. 
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Suppose you mistakenly put the course title as an attribute 
in the Enrollment relationship, as shown in Figure 3.23. 
This relationship would be translated as follows: 
 

Enrollment(ssn, courseId, dateRegistered, grade, title) 

 
 

Student Course 
m m

ssn name address

lastName 

mi 

firstName 

email 

phone 

street 

city 

zipcode 

state 

courseId

title

numOfCredits

numOfprereqs 

prerequisites 

gradedateRegistered

birthDate number

Take 

title

 
Figure 3.23 

The title attribute is mistakenly set as an attribute for 
the Enrollment relationship. 

The Enrollment table is not in 2NF, because the candidate 
key in the table is {ssn, courseId} and title is partially 
dependent on courseId. To normalize Enrollment into 2NF, you 
need to remove the non-key attributes that are dependent on 
the partial key from the relation and place them along with 
the partial keys in one or more separate tables. The 
Enrollment table can be decomposed as follows: 
 

Enrollment(ssn, courseId, dateRegistered, grade) 
T(courseId, title) 

 
Obviously, T should be combined into Course.  
 
A decomposition is called lossless if no information is lost 
in the process. Specifically, assume a relation R is 
decomposed into relations R1, R2, ..., and Rk, the 
decomposition is lossless if and only if r(R) = r(R1)� r(R2) 
� ... � r(Rk). 
 
 
3.5.4 Third Normal Form (3NF) 
 
A relation is in the third normal form (3NF) if it is in 2NF 
and no non-key attribute is transitively dependent on any 
candidate key. An attribute A is transitively dependent on a 
set of attribute X, if there is a set of attributes Z that 
is not a subset of any candidate key and X  Z and Z  A. 
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Z is called attribute A’s non-key determinant. 
 
For example, the Student relation is not in 3NF, because 
city and state are transitively dependent on the candidate 
key ssn since ssn  zipcode and zipcode  city state. To 
normalize Student into 3NF, you need to remove the non-key 
attributes that are transitively dependent on the candidate 
key from the relation and place them along with their 
determinants into a new relation. The Student table can be 
decomposed as follows: 
 

Student(ssn, lastName, mi, firstName, phone, email, birthDate,  
  Street, zipcode) 
Zipcode(zipcode, city, state)  

 
3.5.5 Boyce-Codd Normal Form (BCNF) 
 
A relation in 3NF may still face some redundancy problems. 
For example, suppose the StoreAddress relation has the 
attributes street, city, state, zipCode, and store with the 
functional dependencies zipCode  city, state, and street, 
city, state  zipCode. StoreAddress is in 3NF because 
{store, zipCode, street} and {store, street, city, state} 
are the candidate keys and every attribute in StoreAddress 
is a key attribute. As shown in Figure 3.24, city and state 
information are redundantly stored for the same zipCode. As 
a consequence, the StoreAddress relation suffers the 
insertion, deletion, and update problems.  
 
 

street                                 city                   state             zipCode           store       

99 Kingston Street           Atlanta               GA              31435              Kroger 
100 Main Street               Savannah            GA              31411              Kroger 
1200 Abercorn Street       Savannah           GA               31419             Kroger 
100 Main Street               Fort Wayne         IN               46825              Scott 
100 Main Street               Savannah            GA              31411              Scott 
555 Franklin Street          Savannah            GA              31411              Scott 
104 Main Street               Atlanta                GA              31435              Publix 
103 Bay Street                 Savannah            GA              31411              Publix 

StoreAddress Table 

 
Figure 3.24 

StoreAddress is in 3NF, but it still suffers redundancy 
problems.  

BCNF was introduced to tackle this problem. A relation is in 
the Boyce-Codd normal form (BCNF) if the determinant of 
every non-trivial functional dependency is a candidate key. 
 
The StoreAddress relation is not in BCNF, because zipCode is 
a determinant in the functional dependency zipCode  city, 
state, but zipCode is not a candidate key. You can decompose 
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it into two relations Store(store, street, zipCode) and 
ZipCode(zipCode, city, state).  
 

NOTE: Normal forms are for measuring the quality 
of database design. Normalization is a 
guideline, not a mandate. Normalization reduces 
redundancy, but it slows down the performance 
because you have to perform natural join to 
obtain information that is now in two or more 
tables. Suppose your application needs to print 
student mailing address frequently. If city and 
state are in the Zipcode table, you have to 
frequently perform the natural join operations 
to obtain student name and address from the 
Student table and the Zipcode table. To improve 
the performance, you may combine the Zipcode 
table into the Student table. 

NOTE: Normalization has been thoroughly studied 
in the literature. Many other normal forms were 
proposed. These forms have theoretical 
interests. However, 1NF, 2NF, 3NF, and BCNF are 
the ones used in practice. There are many 
interesting topics that could be covered in a 
database text. The focus of this book is on 
practical aspects of the database systems, not 
to survey normalization theory. 

3.5.6 Normalization Examples 
 
Let us now apply the normalization theory in the following 
examples: 
 
Example 3.1: Suppose relation R consists of the attributes 
facultyAdvisor, rank, status, studentAdvisee, and since. 
Figure 3.25 shows an instance of the relation.  
 
 

facultyAdvisor       rank             status       studentAdvisee      since                  

Baker                      Asst Prof     10            John                       1-AUG-2002 
Baker                      Asst Prof     10            Jim                         1-JAN-2001 
Baker                      Asst Prof     10            George                   1-AUG-2001 
Smith                      Professor     30            Kim                        1-AUG-2001 
Smith                      Professor     30            Katie                      1-AUG-2001 
Smith                      Professor     30            Kathy                     1-AUG-2002 
Jones                       Professor     30            Peter                       1-AUG-2001 

 
Figure 3.25 

An instance of the relation with attributes faculty, rank, 
status, studentAdvisee, and since. 
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The semantic meaning of this relation is as follows: 
 

• Each faculty has a unique rank; 
• A faculty’s status is determined by the rank;  
• The attribute since records the date when a student is 

assigned to a faculty advisor. 
 
You can derive the following functional dependencies from 
the semantic meaning: 
 
facultyAdvisor  rank 
rank  status 
facultyAdvisor, studentAdvisee  since 
 
The candidate key is facultyAdvisor and studentAdvisee. 
Since rank is a non-key attribute that is partially 
dependent on the key, this relation is not in 2NF. It can be 
decomposed into R1(facultyAdvisor, rank, status) and 
R2(facultyAdvisor, studentAdvisee, since).   
 
facultyAdvisor is now the key in the relation R1. R1 is not 
in 3NF, because status (a non-key attribute) is transitively 
dependent on facultyAdvisor. So, R1 can be further 
decomposed into R11(facultyAdvisor, rank) and R12(rank, 
status). 
 
Example 3.2: Suppose relation R consists of the attributes 
student, course, teacher, and office. Figure 3.26 shows an 
instance of the relation.  
 
 

student          course                 teacher       office    

Kevin            Intro to Java I        Baker       UH101 
Ben               Intro to Java I        Baker       UH101 
Kevin            Intro to Java I        Baker       UH101 
Chris             Intro to Java I        Baker       UH101 
Cathy            Intro to Java I        Liang        SC112 
George          Intro to Java I        Liang        SC112
Cindy            Intro to Java I        Liang        SC112
Greg              Database               Smith        SC113

 
Figure 3.26 

An instance of the relation with attributes student, course, 
teacher, and office. 

The semantic meaning of this relation is as follows: 
 

• A student takes a course taught by a teacher; 
• A teacher teaches only one course; 
• A teacher has an office. 
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You can derive the following functional dependencies from 
the semantic meaning: 
 
student, course  teacher 
teacher  course 
teacher  office 
 

The candidate keys are {student, course} and {student, 
teacher}. Since office (a non-key attribute) is partially 
dependent on the candidate key {student, teacher}, this 
relation is not in 2NF. The relation can be decomposed into 
R1(student, course, teacher) and R2(teacher, office). The 
functional dependencies in R1 are  
 
student, course  teacher 
teacher  course 
 
R1 is not in BCNF because teacher is a determinant, but it 
is not a candidate key. Should R1 be further decomposed? It 
is not a good to decompose it, because the semantic meaning 
student, course  teacher would be lost if it is 
decomposed.  
 
Example 3.3: Suppose a relation R=ABCD has the functional 
dependencies AB  C and B  D. What is the highest normal 
form of R? The candidate key in R is AB. Since D is 
partially dependent on the candidate key, R is not in 2NF. 
So, the highest normal for R is 1NF. 
 
Example 3.4: Suppose a relation R=ABCDE has the functional 
dependencies A  C, B  D. What is the highest normal form 
of R? The candidate key in R is ABE. Since C is partially 
dependent on the candidate key, R is not in 2NF. So, the 
highest normal for R is 1NF. 
 
Example 3.5: Suppose a relation R=ABC has the functional 
dependencies A  B, B  C. What is the highest normal form 
of R? The candidate key in R is A. Since C is transitively 
dependent on the candidate key, R is not in 3NF. So, the 
highest normal for R is 2NF. 
 

Chapter Summary 
 
This chapter introduced database design. You learned to use 
the ER diagrams to model database and use the normal forms 
to improve the database design. The ER diagrams model the 
database by discovering the entities and analyzing their 
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relationships. The ER diagrams provide a high-level 
description of the database. You learned how to translate ER 
diagrams into tables. You also learned the functional 
dependencies and the normal forms (1NF, 2NF, 3NF, BCNF) and 
improve the relation schemas through normalization. 
 
Review Questions 
 
3.1 What is an entity, an entity set, and an entity class. 
 
3.2 What are attributes, derived attributes, multivalued 
attributes, composite attributes, and key attributes? 
 
3.3 What is a relationship, a relationship set, and a 
relationship class? 
 
3.4 What is cardinality of a relationship? What is a one-to-
many relationship, one-to-one relationship, and many-to-one 
relationship? 
 
3.5 What is a total relationship? What is a partial 
relationship? 
 
3.6 What is a weak entity class? What is an identifying 
relationship? 
 
3.7 What is a ternary relationship? 
 
3.8 Describe the graphical notations for entities, weak 
entities, relationships, identifying relationships, 
attributes, key attributes, derived attributes, composite 
attributes, and multivalued attributes?  
 
3.9 How do you translate an ER diagram to tables? 
 
3.10 Justify the guidelines for translating one-to-may and 
one-to-one relationships into tables. 
 
3.11 Give an example of an inheritance relationship. How do 
you translate an inheritance relationship into tables? 
 
3.12 Give an example of an overlapping relationship. How do 
you translate an overlapping relationship into tables? 
 
3.13 What is normalization? 
 
3.16 What is a functional dependency? 
 
3.17 What is the first normal form, the second normal form, 
the third normal form, and BCNF? 
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Exercises 
 
3.1 Translate the ER diagram in Figure 3.27 into relational 
schemas. 
 
 

E1 E3 R2 

E4 

R3 

m

m

1 m

1 

R4 

E2 

a11 a12 
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b22b21 
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E5 

R1 

1

m

1 

a17 

a21 a22 

a52 a53 

b11 

a32 

 
Figure 3.27 

You can translate an ER diagram into tables. 

3.2 Translate the EER diagram in Figure 3.28 into relational 
schemas. 
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E1 

E3 

d

a11 a12 a13 a14

a21 a22 a23 a24 a31 a32 a33

d1 

 
 
Figure 3.28 

You can translate an EER diagram into tables. 

3.3 Design a database for a publishing company. A publishing 
company has the following entity types: Employee, 
Department, Author, Editor, and Book.  
 
Employee has the attributes: ssn (primary key), name (a 
composite attribute consisting of firstName, mi, and 
lastName), address (a composite attribute consisting of 
street, city, state, and zipCode), office, and phone. 
Department has the attributes: deptId (primary key), name, 
and headed. Author has the attributes: ssn (primary key), 
name (a composite attribute consisting of firstName, mi, and 
lastName), address (a composite attribute consisting of 
street, city, state, and zipCode), and phone. Editor is a 
subclass of Employee with an attribute specialty that 
denotes the type of the book (CS, MATH, BUSS, etc.) An 
editor may have many specialties. Book has attributes: isbn 
(primary key), title, and date.  
 
The relationship types are WorksIn, Edits, Writes, Sales, 
and WorksOn. WorksIn describes the relationship between an 
employee and a department and it has a time attribute to 
indicate when the employee started to work for the 
department. Edits describes the relationship between an 
editor and a book. An editor may edit many books and a book 
is edited by only one editor. Writes describes the 
relationship between an author and a book. An author may 
write several books and a book may be written jointly by 
several authors. Sales describes the relationship between an 
employee and a book and it has an attribute to denote the 
number of the copies sold by an employee. WorksOn describes 
that an employee works on a book. 
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Draw the ER diagram for the publishing company database and 
translate the ER diagram into relational schema. 
 
3.4 Prove the augmentation rule, decomposition rule and 
union rule. 
 
3.5 Find all candidate keys in the following relations. 
 
a. R = ABCDEF  AB -> C, C -> DE, F -> E 
b. R = ABCDEF  A -> D, D -> E, E -> F 
c. R = ABCDEF  AB -> CD, C -> DE, E -> F 
 
3.6 What are the highest normal forms (up to BCNF) of the 
following relations? 
 
a. R = ABCDEF  AB -> C, C -> DE, F -> E 
b. R = ABCDEF  A -> D, D -> E, E -> F 
c. R = ABCDEF  AB -> CD, C -> DE, E -> F 
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