

CHAPTER

3

Database Design

Objectives
• To use ER modeling to model data.

• To identify entities and their relationships.

• To describe entities using attributes, multivalued
attributes, derived attributes, and key attributes.

• To know the difference between strong entities and
weak entities.

• To use EER to model inheritance relationships.

• To become familiar with graphical notations in ER and
EER.

• To learn how to translate ER/EER into relation
schemas.

• To understand functional dependencies and use normal
forms to further reduce redundancy.

3.1 Introduction

Before you can store data into the database, you have to
define tables. How tables are defined will impact the
database quality. For example, suppose the Department table
is defined as shown in Figure 3.1, obviously the table
stores the college information redundantly. Redundancy
causes many problems. First, it takes additional space to
store redundant data. Second, it slows down the update
operation. For example, if the deanId for the Science
college is changed, the DBMS has to exhaustively search for
all the records to change the deanId for the Science
college. Third, if the special education department is
deleted, the information on the Education college is deleted

© Copyright Y. Daniel Liang, 2005
1

too since the information on Education college appears only
in one record. The root cause of all these problems is that
the two entities Department and College are mixed into one
table. This problem can be avoided if the table is derived
from a sound database design methodology.

Department Table

deptId name headId collegeId name since deanId

CS Computer Science 111221115 SC Science 1-AUG-1930 999001111
MATH Mathematics 111221116 SC Science 1-AUG-1930 999001111
CHEM Chemistry 111225555 SC Science 1-AUG-1930 999001111
SPED Special Education 222223333 EDUC Education 1-AUG-1935 888001111

Figure 3.1

The department and college information are mixed into one
table.

A proven sound methodology for database design is the
Entity-Relationship (ER) modeling, which was first proposed
by Peter Chen in his 1976 paper “Entity-Relationship Model:
Toward a Unified View of Data.” This modeling approach has
been widely used for designing logical database schemas. The
first step to design a database is to understand the system,
know how the system works, and discover what data is needed
to support the system, then obtain an ER model and translate
the model into the relation schemas, and finally improve the
relation schemas using normal forms, as shown in Figure 3.2.

Interact with the
user to

understand the
System

ER Modeling
Translate the ER

model into
relation schemas

Improve Relation
Schemas Using
Normal Forms

Figure 3.2

An ER diagram can be used to design logical database
schemas.

3.2 Entity-Relationship Modeling

An ER model is a high-level description of the data and the
relationships among the data, rather than how data is
stored. It focuses on identifying the entities and the
relationship among the entities.

3.2.1 Entities and Attributes

© Copyright Y. Daniel Liang, 2005
2

An entity is a distinguishable object in the enterprise. An
entity has attributes that describe the properties of the
entity. For example, a course is an object in the student
information system. The course subject, number, name, number
of credit hours, and prerequisites are the attributes for
the course. All the courses have same type of attributes. A
collection of entities of the same attributes is called an
entity set. An entity class (or type) defines an entity set.
An entity class is like a Java class except it does not have
methods. An entity is also known as an entity instance of
its entity class.

3.2.1.1 Key Attributes

Since each entity is distinct, no two entities can have the
same values on the attributes. Each entity class has an
attribute or a set of attributes that can be used to
uniquely identify the entities. In case there are several
keys in the entity class, you can designate one as the
primary key. For example, you can designate the course title
to be the key, assume that every course has a different
title.

3.2.1.2 Composite Attributes

A composite attribute is an attribute that is composed of
two or more sub-attributes. For example, the Student entity
class has the address attribute that consists of street,
city, state, and zipcode.

3.2.1.3 Multivalued Attributes

A multivalued attribute is an attribute that may consist of
a set of values. For example, the Course entity class has
the prerequisites attribute. A course may have several
prerequisites. Therefore, the prerequisites attribute is a
multivalued attribute.

3.2.1.4 Derived Attributes

A derived attribute is an attribute that can be derived or
calculated from the database. A derived attribute should not
be stored in the database. For example, you may add an
attribute named numOfPrerequisites to the Course entity
class. This attribute can be calculated from the
prerequisites attribute.

3.2.2 ER Diagrams

ER modeling can be described using diagrams. Diagrams make
the ER models easy to understand and simple to explain.

© Copyright Y. Daniel Liang, 2005
3

Figure 3.3 shows an ER diagram for the Course entity class
and its attributes. An entity class is represented by a
rectangle, an attribute by oval, multivalued attribute by an
oval of double borders, and derived attribute by dashed
oval. The primary key attribute(s) are underlined. Figure
3.4 shows an ER diagram for the Student entity class, where
address is a composite attribute.

Course

courseNumber title numOfCredits numOfprereqsprerequisites

Figure 3.3

An ER diagram is used to describe the Course entity class
and its attributes.

Student

ssn name major address

firstName mi lastName street city state

age
birthDate

Figure 3.4

An ER diagram is used to describe the Student entity class
and its attributes.

3.2.2 Relationships and Relationship Classes

An ER model discovers entities and identifies the
relationship among the entities. A relationship between two
entities represents some association between them. For
example, a student taking a course represents an enrollment
relationship between the student and the course. A
collection of same type of relationships forms a
relationship set. A relationship class (or type) defines a
relationship set. A relationship is also known as a
relationship instance of its relationship class.

To identify relationships in the enterprise, watch for verbs

© Copyright Y. Daniel Liang, 2005
4

in the phrases. For example, the verbs “works” in the phrase
“a faculty works in department” implies an employment
relationship between a faculty and a department. The
entities are identified from the nouns.

Relationships can have attributes just like the entities.
For example, the enrollment relationship may have an
attribute to record when a student is registered for the
course.

3.2.2.1 Cardinality Constraints on Relationships

A relationship class establishes the relationships between
the entities in the entity classes. An entity in one entity
class may be associated with one or more entities in the
other entity class. A cardinality constraint on a
relationship class puts restrictions on the number of
relationships in which an entity may participate. There are
four basic types of constraints:

One-to-one: An entity in either entity class may participate
in at most one relationship. For example, a computer user
account is assigned to one user and a user can have only one
account. So, the relationship between User and Account is
one-to-one, as shown in Figure 3.5. The marriage
relationship is one-to-one too.

User Has Account

Figure 3.5

The relationship between User and Account is one-to-one.

One-to-many: An entity in the first entity class may
participate in many relationships, but the entity in the
second class may participate in at most one. For example,
the relationship between Department and Faculty is one-to-
many, because one department may have many faculty and a
faculty can be in only one department. Figure 3.6
illustrates the constraint.

© Copyright Y. Daniel Liang, 2005
5

Department Has Faculty

Figure 3.6

The relationship between Department and Faculty is one-to-
many.

Many-to-one: The same as one-to-many, but the entity sets
are reversed.

Many-to-many: An entity in both entity sets may participate
in many relationships. For example, a student can take many
courses, and a course can be taken by many students. Figure
3.7 illustrates such constraint.

Student Take Course

Figure 3.7

The relationship between Student and Course is many-to-many.

3.2.2.2 Participation Constraints

The participation constraint specifies whether every entity
in an entity class participates in a relationship. If so, it
is called a total participation, otherwise it is called a
partial participation. For example, the participation of
Faculty in the employment relationship with Department is
total, because every faculty in the Faculty entity class
must work for a department. The participation of Student in
the enrollment relationship with Course may be partial,
because not every student takes a course. A student may take

© Copyright Y. Daniel Liang, 2005
6

a semester off.

Figure 3.8 shows an ER diagram that describes the
relationships among Student, Course and Subject. A
relationship class is represented using a diamond. The
constraints on the relationships are denoted using 1 for one
and m for many. A total participation is denoted using
double lines.

Student Course Enrollment Subject BelongsTo
m 1m m

dateEnrolled

Figure 3.8

An ER diagram is used to describe the relationships.

3.2.2.3 Ternary or n-ary Relationships

The relationships discussed in the preceding sections are
binary relationship between two entity classes. It is
possible that a relationship may involve three or more
entity classes. For example, “a company provides a product
for a project” involves three entities Company, Product and
Project, as shown in Figure 3.9. A company may provide many
products to many projects. A product may be provided by many
companies for many projects. A project may use many products
from many companies.

Company Product

Supply

Project

m

mm

name

stockSymbol

address
name

color
weight

name

description

dateSupplied

Figure 3.9

An ER diagram can be used to describe a ternary
relationship.

“A company provides a product for a project” is a true
ternary relationship, because Company, Product and Project
are all associated together and cannot be separated. Some

© Copyright Y. Daniel Liang, 2005
7

ternary relationships may be false and should be actually
represented using binary relationships. For example, “A
student takes a course taught by a faculty” could be
erroneously represented using a ternary relationship
involving Student, Course and Faculty. This is wrong because
a student and a faculty are not directly associated. The
sentence “A student takes a course taught by a faculty” is
equivalent to “A student takes a course and a course is
taught by a faculty.”

3.2.3 Weak Entities and Identifying Relationship Classes

An entity is called a weak entity if its existence is
dependent on other entities. The other entities are called
owner entities. In contrast, a regular entity is called a
strong entity. For example, a faculty has dependents.
Dependent is a weak entity class that is dependent on its
owner entity class Faculty. A relationship between Faculty
and Dependent is called an identifying relationship for the
weak entity. Figure 3.10 shows an ER diagram that describes
Faculty and Dependent and their relationship. A weak entity
class is represented by a rectangle of double borders and a
diamond of double borders represents its identifying
relationship class. Since every weak entity must be
associated with a strong entity, the weak entity class is a
total participation of the relationship.

Faculty
m 1

has Dependent

ssn

name

birthDate

sex

Figure 3.10

Dependent is a weak entity that is dependent on Faculty.

A weak entity cannot have a key. If an entity has a key, it
must be classified as a strong entity set. Suppose Dependent
has the attributes ssn, name, birthDate, and sex. If each
dependent has a SSN, ssn can be used as the key for the
Dependent class. In this case, Dependent becomes a strong
entity. It is possible that a dependent may not have a SSN.
For example, a newborn may not have a SSN. In this case,
Dependent does not have a key, because two dependents may
have the same value on name, birthDate, and sex. Dependent
has no keys and is a weak entity class. Though Dependent
does not have a key, each dependent is distinct and can be
identified through its identifying relationship with its

© Copyright Y. Daniel Liang, 2005
8

owner entities. The key in the Faculty class along with the
name attribute in the Dependent class can form a key to
uniquely identify dependents. The name attribute is referred
to as a partial key. In the ER diagram, a partial key is
underlined by a dashed line, as shown in Figure 3.10.

3.2.4 ER Diagram for a Student Information System

Now you can use the ER diagram to describe a student
information system as shown in Figure 3.11. Figure 3.12
summarizes the graphical notations for ER diagrams. Figure
3.11 describes the strong entity classes Student, Course,
Subject, Department, College, and Faculty, and the weak
entity classes Transcript and Dependent, and the
relationships among these entities classes. The ER diagram
is self-describing and easy to understand. The ER diagram
describes a hypothetical student information system and it
is not intended to give a complete description of the
system. The book will use this database in the examples.

Student Course Enrollment

Faculty

TaughtBy

Subject BelongsTo
m 1

m

m

m m

Department

m

1

OfferedBy

College

m

1

BelongsTo

WorksIn
m 1 1

has

Account

ssn name address

lastName

mi

firstName

email
phone

street

city

zipcode

state

courseId

title

numOfCredits

numOfprereqs

prerequisites

subjectId

name

startTime

gradedateRegistered

name

deptId

name

collegeCode

dean

lastName mi firstName

name

startTime

ssn
name

rank

email

phone

lastName

mi
firstName

office

numOfdependents

since

Dependent

Owns

1

m

1

birthDate

username password

birthDate sex

since

courseNumberr

Chairs
1 1 salary

age

deptId

© Copyright Y. Daniel Liang, 2005
9

Figure 3.11

A student information system is represented using an ER
diagram.

 Strong Entity Class

Weak Entity Class

Relationship Class

Identifying
Relationship Class

Total Participation
Relationship

Partial Participation
Relationship

 Attribute

 Key Attribute

 Derived Attribute

 Multivalued Attribute

 Composite Attribute

 Partial Key
Attribute

Figure 3.12

An ER diagram uses graphical notations to describe entities,
attributes, and relationships.

NOTE: The ER model is not unique. There are many
ways to design an ER model. For example, you may
consider registration as a weak entity set. So
the relationship among Student, Registration,
and Course can be drawn as shown in Figure 3.13.

Student
m 1

ssn name address

lastName

mi

firstName

phone

street

city

zipcode

state

birthDate

Course
m

courseNumber

title

numOfCredits

numOfprereqs

prerequisites

Registrationhas
1

has

email

age

deptId

Figure 3.13

© Copyright Y. Daniel Liang, 2005
10

Student and Course can alternatively be described through
the Registration weak entity class.

3.3 Translating ER Models to Relation Schemas

Once an ER model is created, you can translate it into
relation schemas. This section uses the student information
system to demonstrate the translation guidelines.

3.3.1 Translating Strong Entity Classes

For each strong entity class in the ER diagram, create a
relation schema. Choose the primary key of the entity class
as the primary key of the relation. The attributes are
translated in the following sections.

3.3.2 Translating Simple Attributes

For each simple attribute, create a field in the relation.
For example, to translate simple attributes ssn, phone,
birthdate, and email in the Student entity class, create
fields ssn, phone, birthdate and email in the Student table.
You may argue that birthdate is a composite attribute
because it consists of day, month and year. However, it is a
bad idea to separate them. SQL has a time type (equivalent
to Oracle’s date type) that can be used to represent date
and time. You can extract day, month and year from a time or
date type value.

3.3.3 Translating Composite Attributes

For each composite attribute, create a field for each simple
attribute in the composite attribute. For example, to
translate the composite attribute name in the Student entity
class, create fields lastName, mi, and firstName in the
Student table. The Student entity class can be translated as
follows:

Student(ssn, lastName, mi, firstName, phone, email, birthDate,
 street, city, state, zipcode)

3.3.4 Translating One-to-Many Relationships

For each one-to-many relationship type between entity
classes S and T, select one whose cardinality is many, say
T, as target. Add the primary key attributes of S (whose
cardinality is 1) to T as a foreign key. Add the simple and
composite attributes of the relationship class into T. For
example, WorksIn is a one-to-many relationship between
Department and Faculty. To translate it, add the primary key
attributes in the Department table to the Faculty table as a

© Copyright Y. Daniel Liang, 2005
11

foreign key. Add the startTime attribute in the WorksIn
relationship class to the Faculty table. The Faculty schema
is as follows:

Faculty(ssn, lastName, mi, firstName, phone, email, office,
 rank, deptId, startTime)

You might wonder why it is a good guideline to add the
primary key of S and the attributes of the relationship
class to T. The answer is that this reduces redundancy. If
you add the primary key of T and the attributes of the
relationship class to S, there would be more redundancy in
S. For example, suppose you add the primary key of Faculty
and startTime to Department, a sample Department table is
shown in Figure 3.14. In this Department table, for every CS
faculty, the CS department information is stored. This is
obviously redundant.

deptId name headId collegeId facultySsn startTime

CS Computer Science 111221115 SC 111221111 12-OCT-86
CS Computer Science 111221115 SC 111221115 01-JAN-00
CS Computer Science 111221115 SC 111221119 01-JAN-94
MATH Mathematics 111221116 SC 111221110 11-OCT-76
MATH Mathematics 111221116 SC 111221112 13-AUG-76
MATH Mathematics 111221116 SC 111221116 13-AUG-76
MATH Mathematics 111221116 SC 111221112 01-JAN-00
…
…

A Department Table with Redundancy

Figure 3.14

Department information is stored redundantly in the
Department table.

3.3.4 Translating One-to-One Relationships

For each one-to-one relationship type between entity classes
S and T, select one with less non-participating entities, as
T, as the target. Add the primary key of S to T as a foreign
key and add the simple and composite attributes of the
relationship into T. For example, Owns is a one-to-one
relationship between Student and Account. Since every
account belongs to a student, you should select Account as
the target. Add the primary key of Student to Account as a
foreign key and add the since attribute to the Account
relation. The Account schema is as follows:

Account(username, password, ssn, since)

So why is it a good guideline to select the entity class
with less non-participating entities as the target? To

© Copyright Y. Daniel Liang, 2005
12

answer the question, consider selecting Student as the
target for translating the Owns relationship. Add the
primary key username of the Account and the attribute since
of the Owns relationship to the Student table. Figure 3.15
shows a sample new Student table. Clearly, the new Student
table has many null values because not every student owns an
account. If you follow the guideline to translate the
relationship, you can avoid having too many null values.

ssn firstName mi lastName username since

444111110 Jacob R Smith jsmith 9-APR-1985

444111111 John K Stevenson null null

444111112 George R Heintz gheintz 1-SEP-1986

444111113 Frank E Jones null null

444111114 Jean K Smith null null

444111115 Josh R Woo null null
…
…

A Student Table with Many null values

Figure 3.15

The Student table contains many null values.

3.3.5 Translating Many-to-Many Relationships

For each many-to-many relationship type R between entity
classes S and T, create a new relation schema named R. Let
S(k) and T(k) denote the primary keys in S and T,
respectively. Add S(k) and T(k) into R and add the simple
and composite attributes of the relationship class into R.
The combination of S(k) and T(k) is the primary key in R.
Both S(k) and T(k) are the foreign keys in R. For example,
Enrollment is a many-to-many relationship between Student
and Course. Create a new relation named Enrollment whose
attributes include the keys from Student and Course and the
attributes dateRegistered and grade. The Enrollment schema
is as follows:

Enrollment(ssn, courseId, dateRegistered, grade)

3.3.6 Translating n-ary Relationships

For each n-ary relationship for n > 2, create a new relation
schema. Add the primary key of each participating entity
class into the relation schema as foreign keys. The
combination of all these foreign keys forms the primary key
in the new relation. Add all simple and composite attributes
of the n-ary relationship class into the new relation. For
example, the ternary relationship in Figure 3.9 can be
translated into the following schema:

© Copyright Y. Daniel Liang, 2005
13

Supply(companyName, productName, projectName, dateSupplied)

3.3.7 Translating Weak Entity Classes

For each weak entity class W, create a new relation schema
named W. Add the primary key of its owner entity class into
W as a foreign key and add all simple and composite
attributes of W into the relation. The primary key of the
relation is the combination of the primary key from its
owner relation and the partial key, if any. For example,
Dependent is a weak entity class and its owner class is
Faculty. So Dependent can be translated as follows:

Dependent(ssn, lastName, mi, firstName, sex, birthDate)

3.3.8 Translating Multivalued Attributes

For each multivalued attribute, create a new relation
schema. Let R be the relation schema that represents the
entity class or relationship class that contains the
multivalued attribute. Add the multivalued attribute into
the schema and add the primary key attributes of R. The
combination of all attributes forms the primary key of the
new relation. For example, to translate the multivalued
attribute prerequisites in Course, create a new relation
schema named Prerequisite as follows:

Prerequisite(courseId, prerequisiteCourseId)

3.4 Enhanced Entity-Relationship Modeling

The ER modeling presented in the preceding section is
sufficient to model simple data relationships. A large
database system may contain many entity classes and an
entity may belong to several entity classes or share
properties with entities from different classes. These
relationships correspond to class inheritance in the object-
oriented programming. To accurately represent these
relationships, an extension of ER modeling, called Enhanced
ER modeling (EER), was introduced.

3.4.1 Representing Inheritance Relationships

Inheritance models the is-a relationship between two entity
classes. “An entity class A is a special case of an entity
class B” establishes an is-a relationship. A is called a
subclass and B is called a superclass. There are two ways to
discover inheritance relationships—specialization and
generalization. Specialization is the process of defining a
set of subclasses for a superclass. Generalization is the
process of recognizing two or more classes have common
features so that you can generalize these classes to create

© Copyright Y. Daniel Liang, 2005
14

a superclass.

For example, a faculty may be part-time or full-time, so you
can define two subclasses PartTimeFaculty and
FullTimeFaculty. You could use the ER diagram in Figure 3.16
to represent their relationships.

PartTimeFaculty Is-a Faculty Is-a FullTimeFaculty

Figure 3.16

PartTimeFaculty and FullTimeFaculty are special cases of
Faculty.

The problem with the ER diagram in Figure 3.16 is that it
does not describe the relationships between PartTimeFaculty
and FullTimeFaculty. They are both subclasses of Faculty. A
faculty can belong to only one subclass, either full-time or
part-time, cannot be both. A more appropriate notation is
shown in Figure 3.17, where PartTimeFaculty and
FullTimeFaculty are connected through a circle. The letter d
inside the circle denotes the subclasses are disjoint. A cup
sign facing the superclass is used to represent inheritance.

PartTimeFaculty

Faculty

FullTimeFaculty

d

ssn name phone

lastName lastName firstName

sickLeaveHourssalarypayRate

facultyType

Figure 3.17

PartTimeFaculty and FullTimeFaculty are disjoint subclasses
of Faculty.

The Faculty superclass may use an attribute facultyType to
determine whether a faculty is a part-time faculty or a
full-time faculty. Such an attribute is referred as a

© Copyright Y. Daniel Liang, 2005
15

defining attribute.

The double-line connecting between Faculty and the circle
implies total participation by Faculty. Each faculty must be
either part-time or full-time. It is possible for a partial
participation to exist in the inheritance relationship,
which allows an entity not to belong to any subclasses. For
example, an instructor may be neither full-time faculty nor
part-time faculty as shown in Figure 3.18.

PartTimeFaculty

Instructor

FullTimeFaculty

d

Figure 3.18

PartTimeFaculty and FullTimeFaculty are instructors, but an
instructor may be neither part-time faculty nor full-time
faculty.

3.4.2 Representing Overlapping Relationships

If the subclasses are not constraint to be disjoint, their
sets of entities may overlap. For example, you may consider
an honors course and a distance-learning course as
subclasses of Course. An honors course may be a distance-
learning course too, so the HonorCourse and
DistanceLearningCourse classes may overlap. To denote
overlapping relationship, put the letter o inside the
circle, as shown in Figure 3.19.

HonorCourse

Course

DistanceLearningCourse

o

Figure 3.19

HonorCourse and DistanceLearningCourse are special cases of
Course, but they may overlap.

3.4.3 Representing Multiple Specialization Hierarchies

© Copyright Y. Daniel Liang, 2005
16

An entity may belong to more than one specialization
hierarchies. For example, if you wish to further classify
faculty by their ranks and by their administrative
functions, you could define AssistantProf, AssociateProf,
and FullProf, and DepartmentChair, as shown in Figure 3.20.

PartTimeFaculty

Faculty

FullTimeFaculty

d

DepartmentChair AssistantProf

d

AssociateProf FullProf

Figure 3.20

An entity class may have multiple specializations.

CAUTION: A common mistake is to over-specialize
classes. When defining subclasses, check if a
subclass has distinctive attributes that are not
shared by other classes. In Figure 3.20,
AssistantProf, AssociateProf, and FullProf don’t
have their own distinctive attributes. You could
simply add a rank attribute in the Faculty class
to describe a faculty’s rank.

3.4.4 Representing Multiple Inheritance

Multiple inheritance means that a subclass may be derived
from two or more superclasses. Multiple inheritance can be
described in EER. For example, a department chair is both a
faculty and an administrator, as shown in Figure 3.21.

Faculty

DepartmentChair

Administrator

Figure 3.21

DepartmentChair is both a faculty and an administrator.

3.4.5 Translating Inheritance Relationships into Relation
Schemas

There are three options for translating inheritance
relationships to relation schemas.

© Copyright Y. Daniel Liang, 2005
17

Option 1: For each superclass P, create a relation schema
named P and add all its simple and composite attributes to
the schema. For each specialization of P that has a defining
attribute, add that attribute to the relation schema. For
each subclass of P, create a relation schema, add the
primary key of P into this new relation as a foreign key. In
the case, the subclasss has multiple superclasses, declare
the primary key of the subclass to be the combination of all
the foreign keys. For example, the EER diagram in Figure
3.18 can be translated into the following three relation
schemas:

Faculty(ssn, lastName, mi, firstName, phone, facultyType)
PartTimeFaculty(ssn, payRate)
FullTimeFaculty(ssn, salary, sickLeaveHours)

Option 2: For each superclass P, create a relation schema
named P and add all its simple and composite attributes to
the schema. For each specialization of P that has a defining
attribute, add that attribute to the relation schema. For
each subclass of P, add its simple and composite attributes
to P. For example, the EER diagram in Figure 3.18 can be
translated into the following relation schema:

Faculty(ssn, lastName, mi, firstName, phone, facultyType,
 payRate, salary, sickLeaveHours)

The drawback of this option is null values on payRate for
full-time faculty and null values on salary and
sickLeaveHours on full-time faculty. The advantage is no
join operation is needed to obtain information pertaining to
part-time or full-time faculty.

This option is not suitable for multiple inheritance where a
subclass has multiple superclasses.

Option 3: For each subclass S, create a relation schema
named S. Add all simple and composite attributes of the
subclass and its superclass to the schema. The primary key
of the new schema is the combination of all keys from the
superclasses in case of multiple inheritance. For example,
the EER diagram in Figure 3.18 can be translated into the
following relation schema:

PartTimeFaculty(ssn, lastName, mi, firstName, phone, payRate)
FullTimeFaculty(ssn, lastName, mi, firstName, phone,
 salary, sickLeaveHours)

This option is not suitable for overlapping specialization,
because it would cause redundancy. For example, if this
option is used to translate the EER in Figure 3.19, a course
may be stored in both HonorCourse and DistanceLearningCourse
relations.

© Copyright Y. Daniel Liang, 2005
18

3.5 Normalization

Figure 3.1 illustrated the redundancy problem in the
Department table. Using the ER modeling, this problem cannot
happen because Department and College are two entity classes
and they are translated into two tables. ER modeling can fix
many problems like the one demonstrated in Figure 3.1, but
redundancy may still exist in the tables translated from the
ER diagrams. For example, the Student table shown in Figure
3.22 stores the city and state information redundantly for
the same zipcode.

Student Table

ssn lastName mi firstName phone email birthDate street city state zipcode

314111111 Smith K John 9125441111 jks@acm.org 3/11/79 100 Main Savannah GA 31411
314111112 Carter G Jim 9125441112 jgc@acm.org 4/10/78 8 Hunters Savannah GA 31411
314111113 Jones K Tim 9125441113 tkj@acm.org 5/15/79 10 River St. Savannah GA 31411
314111114 Frank Z Tom 9125441114 tzf@acm.org 3/15/78 81 Oak St. Savannah GA 31411
314111115 Frew P Kathy 9125441115 kpf@acm.org 7/19/78 1 Moon St. Savannah GA 31411

Figure 3.22

The Student table stores city and state redundantly for the
same zipcode.

This section introduces normalization—a process that
decomposes the relations with redundancy into the smaller
relations that satisfy certain properties. These properties
are characterized into normal forms. A relation is said to
be in a normal form if it satisfies the properties defined
by the normal form. Four commonly used normal forms are
introduced in this section: first normal form (1NF), second
normal form (2NF), third normal form (3NF), and Boyce-Codd
normal form (BCNF). Each normal form ensures that a relation
has certain quality characteristics. Normal forms are
defined using functional dependencies. The following section
introduces functional dependencies.

3.5.1 Functional Dependencies

The problem in the Student table in Figure 3.22 is that city
and state are determined by zipcode. This can be
characterized using function dependencies.

A set of attributes Y is functionally dependent on a set of
attributes X if the value of X uniquely determines the value
of Y. In other words, for any two tuples in R, if their X
values are the same, then their Y values must be same. X is
called a determinant. Equivalently, you can also say that X

© Copyright Y. Daniel Liang, 2005
19

functionally determines Y. This functional dependency can be
described in the following expression:

X Y

So the relationship among city, state, and zipcode is
zipcode city state since for every two tuples with the
same zipcode, their city and state values are the same.

NOTE: A functional dependency in a relation must
be valid for all the instances of the relation
at any time. Once a functional dependency is
specified, you need to make sure that the
dependency is not violated at any time. The DBMS
can enforce the primary key, foreign key and
domain constraints, but it cannot enforce
functional constraints. You can write the
triggers to enforce functional dependencies.
Triggers will be introduced in Appendix G,
“Database Triggers.”

3.5.1.1 Inference Rules

Given a set of functional dependencies, you can derive new
functional dependencies using the following inference rules:

Reflexivity Rule: If X ⊇ Y, then X Y.
Augmentation Rule: If X Y, then XZ YZ.
Union Rule: If X Y and X Z, then X YZ.
Decomposition Rule: If X YZ, then X Y and X Z.
Transitivity Rule: If X Y and Y Z, then X Z.
Pseudo-transitivity Rule: If X Y and WY Z, then WX
Z.

These rules are intuitive and easy to prove. Here are the
examples to prove the reflexivity rule and the pseudo-
transitivity rule. For any two tuples t1 and t2, if t1[X] =
t2[X], then t1[Y] = t2[Y] since Y is a subset of X.
Therefore, X Y.

To prove the union rule, consider two tuples t1 and t2 with
t1[X] = t2[X]. Since X Y, t1[Y] = t2[Y]. Since X Z,
t1[Z] = t2[Z]. Therefore, t1[YZ] = t2[YZ].

To prove the pseudo-transitivity rule, consider two tuples
t1 and t2 with t1[X] = t2[X]. Since X Y, WX WY (by the
augmentation rule). Since WX WY and WY Z, WX Z (by
the transitivity rule).

© Copyright Y. Daniel Liang, 2005
20

3.5.1.2 Minimum Covers

There are many functional dependencies in a relation. For
example, in the Student table in Figure 3.22, you may
identify the following functional dependencies:

ssn lastName, mi, firstName
ssn zipCode
ssn phone, email
ssn birthDate
ssn street
ssn city, state
ssn ssn
lastName lastName

Some of the functional dependencies such as ssn ssn and
lastName lastName are trivial and some can be derived
from the others using the inference rules. A functional
dependency X Y is trivial if both sides contain common
attributes.

A minimum cover is a set of functional dependencies F that
satisfies the following conditions:

• Every dependency has a single attribute for its right-
hand side.

• For every dependency X A, there is no dependency Y
 A for Y ⊂ X.

• No dependency in F can be derived from the other
dependencies in F.

For example, the following is the minimum cover for the
Student table.

ssn lastName
ssn mi
ssn firstName
ssn phone
ssn email
ssn zipCode
ssn birthDate
ssn street
zipCode city
zipCode state

3.5.1.3 Finding keys Using Functional Dependencies

Typically, database designers first identify a set of
functional dependencies from the semantics of the attributes

© Copyright Y. Daniel Liang, 2005
21

in a relation. Additional functional dependencies can be
derived using the inference rules.

You can now define superkey and candidate keys using the
functional dependencies. A superkey is a set of attributes
that determines all attributes in the relation. A candidate
key is a superkey such that no proper subset of it is
another superkey. An attribute is called a key attribute if
it belongs to a candidate key.

A set of attributes, X, may determine many attributes in a
relation. The closure of a set of attributes denoted by X+
is the set of the attributes determined by X. If X is a
superkey, then X+ consists of all attributes in the
relation.

You can use the inference rules to find all candidate keys
in a relation. For example, Let R be a relation schema with
attributes A, B, C, D, E, F, and G and {A CD, B EF, E
 G} is a set of functional dependencies in R. To find a

candidate key is to find a minimum set of attributes, K,
such that K R. You only need to consider the attributes
on the left side of the functional dependency expression,
because only these attributes can be key attributes. Here is
the process of identifying the candidate keys.

Consider attribute A, A ACD.
Consider attribute B, B BEFG.
Consider attribute E, E EG.
Consider combining A and B, AB ABCDEFG. Therefore, AB is
a candidate key.
Consider combining A and E, AE ACDEG.
Consider combining B and E, BE BEFG.

Based on the preceding process, AB is the only candidate
key.

3.5.2 First Normal Form (1NF)

A relation is in the first normal form (1NF) if every
attribute value in the relation is atomic. By definition, a
relation is already in the 1NF.

3.5.3 Second Normal Form (2NF)

A relation is in the second normal form (2NF) if it is in
1NF and no non-key attribute is partially dependent on any
candidate key. An attribute A is partially dependent on a
set of attribute X, if there exists an attribute B in X such
that X – {B} A.

© Copyright Y. Daniel Liang, 2005
22

Suppose you mistakenly put the course title as an attribute
in the Enrollment relationship, as shown in Figure 3.23.
This relationship would be translated as follows:

Enrollment(ssn, courseId, dateRegistered, grade, title)

Student Course
m m

ssn name address

lastName

mi

firstName

email

phone

street

city

zipcode

state

courseId

title

numOfCredits

numOfprereqs

prerequisites

gradedateRegistered

birthDate number

Take

title

Figure 3.23

The title attribute is mistakenly set as an attribute for
the Enrollment relationship.

The Enrollment table is not in 2NF, because the candidate
key in the table is {ssn, courseId} and title is partially
dependent on courseId. To normalize Enrollment into 2NF, you
need to remove the non-key attributes that are dependent on
the partial key from the relation and place them along with
the partial keys in one or more separate tables. The
Enrollment table can be decomposed as follows:

Enrollment(ssn, courseId, dateRegistered, grade)
T(courseId, title)

Obviously, T should be combined into Course.

A decomposition is called lossless if no information is lost
in the process. Specifically, assume a relation R is
decomposed into relations R1, R2, ..., and Rk, the
decomposition is lossless if and only if r(R) = r(R1)� r(R2)
� ... � r(Rk).

3.5.4 Third Normal Form (3NF)

A relation is in the third normal form (3NF) if it is in 2NF
and no non-key attribute is transitively dependent on any
candidate key. An attribute A is transitively dependent on a
set of attribute X, if there is a set of attributes Z that
is not a subset of any candidate key and X Z and Z A.

© Copyright Y. Daniel Liang, 2005
23

Z is called attribute A’s non-key determinant.

For example, the Student relation is not in 3NF, because
city and state are transitively dependent on the candidate
key ssn since ssn zipcode and zipcode city state. To
normalize Student into 3NF, you need to remove the non-key
attributes that are transitively dependent on the candidate
key from the relation and place them along with their
determinants into a new relation. The Student table can be
decomposed as follows:

Student(ssn, lastName, mi, firstName, phone, email, birthDate,
 Street, zipcode)
Zipcode(zipcode, city, state)

3.5.5 Boyce-Codd Normal Form (BCNF)

A relation in 3NF may still face some redundancy problems.
For example, suppose the StoreAddress relation has the
attributes street, city, state, zipCode, and store with the
functional dependencies zipCode city, state, and street,
city, state zipCode. StoreAddress is in 3NF because
{store, zipCode, street} and {store, street, city, state}
are the candidate keys and every attribute in StoreAddress
is a key attribute. As shown in Figure 3.24, city and state
information are redundantly stored for the same zipCode. As
a consequence, the StoreAddress relation suffers the
insertion, deletion, and update problems.

street city state zipCode store

99 Kingston Street Atlanta GA 31435 Kroger
100 Main Street Savannah GA 31411 Kroger
1200 Abercorn Street Savannah GA 31419 Kroger
100 Main Street Fort Wayne IN 46825 Scott
100 Main Street Savannah GA 31411 Scott
555 Franklin Street Savannah GA 31411 Scott
104 Main Street Atlanta GA 31435 Publix
103 Bay Street Savannah GA 31411 Publix

StoreAddress Table

Figure 3.24

StoreAddress is in 3NF, but it still suffers redundancy
problems.

BCNF was introduced to tackle this problem. A relation is in
the Boyce-Codd normal form (BCNF) if the determinant of
every non-trivial functional dependency is a candidate key.

The StoreAddress relation is not in BCNF, because zipCode is
a determinant in the functional dependency zipCode city,
state, but zipCode is not a candidate key. You can decompose

© Copyright Y. Daniel Liang, 2005
24

it into two relations Store(store, street, zipCode) and
ZipCode(zipCode, city, state).

NOTE: Normal forms are for measuring the quality
of database design. Normalization is a
guideline, not a mandate. Normalization reduces
redundancy, but it slows down the performance
because you have to perform natural join to
obtain information that is now in two or more
tables. Suppose your application needs to print
student mailing address frequently. If city and
state are in the Zipcode table, you have to
frequently perform the natural join operations
to obtain student name and address from the
Student table and the Zipcode table. To improve
the performance, you may combine the Zipcode
table into the Student table.

NOTE: Normalization has been thoroughly studied
in the literature. Many other normal forms were
proposed. These forms have theoretical
interests. However, 1NF, 2NF, 3NF, and BCNF are
the ones used in practice. There are many
interesting topics that could be covered in a
database text. The focus of this book is on
practical aspects of the database systems, not
to survey normalization theory.

3.5.6 Normalization Examples

Let us now apply the normalization theory in the following
examples:

Example 3.1: Suppose relation R consists of the attributes
facultyAdvisor, rank, status, studentAdvisee, and since.
Figure 3.25 shows an instance of the relation.

facultyAdvisor rank status studentAdvisee since

Baker Asst Prof 10 John 1-AUG-2002
Baker Asst Prof 10 Jim 1-JAN-2001
Baker Asst Prof 10 George 1-AUG-2001
Smith Professor 30 Kim 1-AUG-2001
Smith Professor 30 Katie 1-AUG-2001
Smith Professor 30 Kathy 1-AUG-2002
Jones Professor 30 Peter 1-AUG-2001

Figure 3.25

An instance of the relation with attributes faculty, rank,
status, studentAdvisee, and since.

© Copyright Y. Daniel Liang, 2005
25

The semantic meaning of this relation is as follows:

• Each faculty has a unique rank;
• A faculty’s status is determined by the rank;
• The attribute since records the date when a student is

assigned to a faculty advisor.

You can derive the following functional dependencies from
the semantic meaning:

facultyAdvisor rank
rank status
facultyAdvisor, studentAdvisee since

The candidate key is facultyAdvisor and studentAdvisee.
Since rank is a non-key attribute that is partially
dependent on the key, this relation is not in 2NF. It can be
decomposed into R1(facultyAdvisor, rank, status) and
R2(facultyAdvisor, studentAdvisee, since).

facultyAdvisor is now the key in the relation R1. R1 is not
in 3NF, because status (a non-key attribute) is transitively
dependent on facultyAdvisor. So, R1 can be further
decomposed into R11(facultyAdvisor, rank) and R12(rank,
status).

Example 3.2: Suppose relation R consists of the attributes
student, course, teacher, and office. Figure 3.26 shows an
instance of the relation.

student course teacher office

Kevin Intro to Java I Baker UH101
Ben Intro to Java I Baker UH101
Kevin Intro to Java I Baker UH101
Chris Intro to Java I Baker UH101
Cathy Intro to Java I Liang SC112
George Intro to Java I Liang SC112
Cindy Intro to Java I Liang SC112
Greg Database Smith SC113

Figure 3.26

An instance of the relation with attributes student, course,
teacher, and office.

The semantic meaning of this relation is as follows:

• A student takes a course taught by a teacher;
• A teacher teaches only one course;
• A teacher has an office.

© Copyright Y. Daniel Liang, 2005
26

You can derive the following functional dependencies from
the semantic meaning:

student, course teacher
teacher course
teacher office

The candidate keys are {student, course} and {student,
teacher}. Since office (a non-key attribute) is partially
dependent on the candidate key {student, teacher}, this
relation is not in 2NF. The relation can be decomposed into
R1(student, course, teacher) and R2(teacher, office). The
functional dependencies in R1 are

student, course teacher
teacher course

R1 is not in BCNF because teacher is a determinant, but it
is not a candidate key. Should R1 be further decomposed? It
is not a good to decompose it, because the semantic meaning
student, course teacher would be lost if it is
decomposed.

Example 3.3: Suppose a relation R=ABCD has the functional
dependencies AB C and B D. What is the highest normal
form of R? The candidate key in R is AB. Since D is
partially dependent on the candidate key, R is not in 2NF.
So, the highest normal for R is 1NF.

Example 3.4: Suppose a relation R=ABCDE has the functional
dependencies A C, B D. What is the highest normal form
of R? The candidate key in R is ABE. Since C is partially
dependent on the candidate key, R is not in 2NF. So, the
highest normal for R is 1NF.

Example 3.5: Suppose a relation R=ABC has the functional
dependencies A B, B C. What is the highest normal form
of R? The candidate key in R is A. Since C is transitively
dependent on the candidate key, R is not in 3NF. So, the
highest normal for R is 2NF.

Chapter Summary

This chapter introduced database design. You learned to use
the ER diagrams to model database and use the normal forms
to improve the database design. The ER diagrams model the
database by discovering the entities and analyzing their

© Copyright Y. Daniel Liang, 2005
27

relationships. The ER diagrams provide a high-level
description of the database. You learned how to translate ER
diagrams into tables. You also learned the functional
dependencies and the normal forms (1NF, 2NF, 3NF, BCNF) and
improve the relation schemas through normalization.

Review Questions

3.1 What is an entity, an entity set, and an entity class.

3.2 What are attributes, derived attributes, multivalued
attributes, composite attributes, and key attributes?

3.3 What is a relationship, a relationship set, and a
relationship class?

3.4 What is cardinality of a relationship? What is a one-to-
many relationship, one-to-one relationship, and many-to-one
relationship?

3.5 What is a total relationship? What is a partial
relationship?

3.6 What is a weak entity class? What is an identifying
relationship?

3.7 What is a ternary relationship?

3.8 Describe the graphical notations for entities, weak
entities, relationships, identifying relationships,
attributes, key attributes, derived attributes, composite
attributes, and multivalued attributes?

3.9 How do you translate an ER diagram to tables?

3.10 Justify the guidelines for translating one-to-may and
one-to-one relationships into tables.

3.11 Give an example of an inheritance relationship. How do
you translate an inheritance relationship into tables?

3.12 Give an example of an overlapping relationship. How do
you translate an overlapping relationship into tables?

3.13 What is normalization?

3.16 What is a functional dependency?

3.17 What is the first normal form, the second normal form,
the third normal form, and BCNF?

© Copyright Y. Daniel Liang, 2005
28

Exercises

3.1 Translate the ER diagram in Figure 3.27 into relational
schemas.

E1 E3 R2

E4

R3

m

m

1 m

1

R4

E2

a11 a12

a13

a14

a15

a18
a16

a31

a33

a34

a36

a35

b22b21

a51

a47
a46

a41

a43

a45

a42

a44

E5

R1

1

m

1

a17

a21 a22

a52 a53

b11

a32

Figure 3.27

You can translate an ER diagram into tables.

3.2 Translate the EER diagram in Figure 3.28 into relational
schemas.

© Copyright Y. Daniel Liang, 2005
29

E2

E1

E3

d

a11 a12 a13 a14

a21 a22 a23 a24 a31 a32 a33

d1

Figure 3.28

You can translate an EER diagram into tables.

3.3 Design a database for a publishing company. A publishing
company has the following entity types: Employee,
Department, Author, Editor, and Book.

Employee has the attributes: ssn (primary key), name (a
composite attribute consisting of firstName, mi, and
lastName), address (a composite attribute consisting of
street, city, state, and zipCode), office, and phone.
Department has the attributes: deptId (primary key), name,
and headed. Author has the attributes: ssn (primary key),
name (a composite attribute consisting of firstName, mi, and
lastName), address (a composite attribute consisting of
street, city, state, and zipCode), and phone. Editor is a
subclass of Employee with an attribute specialty that
denotes the type of the book (CS, MATH, BUSS, etc.) An
editor may have many specialties. Book has attributes: isbn
(primary key), title, and date.

The relationship types are WorksIn, Edits, Writes, Sales,
and WorksOn. WorksIn describes the relationship between an
employee and a department and it has a time attribute to
indicate when the employee started to work for the
department. Edits describes the relationship between an
editor and a book. An editor may edit many books and a book
is edited by only one editor. Writes describes the
relationship between an author and a book. An author may
write several books and a book may be written jointly by
several authors. Sales describes the relationship between an
employee and a book and it has an attribute to denote the
number of the copies sold by an employee. WorksOn describes
that an employee works on a book.

© Copyright Y. Daniel Liang, 2005
30

Draw the ER diagram for the publishing company database and
translate the ER diagram into relational schema.

3.4 Prove the augmentation rule, decomposition rule and
union rule.

3.5 Find all candidate keys in the following relations.

a. R = ABCDEF AB -> C, C -> DE, F -> E
b. R = ABCDEF A -> D, D -> E, E -> F
c. R = ABCDEF AB -> CD, C -> DE, E -> F

3.6 What are the highest normal forms (up to BCNF) of the
following relations?

a. R = ABCDEF AB -> C, C -> DE, F -> E
b. R = ABCDEF A -> D, D -> E, E -> F
c. R = ABCDEF AB -> CD, C -> DE, E -> F

© Copyright Y. Daniel Liang, 2005
31

