

© Copyright Y. Daniel Liang, 2005
1

Supplement IV.G: OverlayLayout
For Introduction to Java Programming

Y. Daniel Liang

OverlayLayout is a Swing layout manager that arranges
components on top of each other. To create an OverlayLayout,
use the following constructor:

public OverlayLayout(Container target)

The constructor creates a layout manager that is dedicated
to the given target container. For example, the following
code creates an OverlayLayout for panel p1:

JPanel p1 = new JPanel();
OverlayLayout overlayLayout = new OverlayLayout(p1);
p1.setLayout(overlayLayout);

You still need to invoke the setLayout method on p1 to set
the layout manager.

A component is on top of another component if it is added to
the container before the other one. Suppose components p1,
p2, and p3 are added to a container of the OverlayLayout in
this order, then p1 is on top of p2, and p2 is on top of p3.

Listing 31.5 gives an example that overlays two buttons in a
panel of OverlayLayout, as shown in Figure 31.10. The first
button is on top of the second button. The program enables
the user to set the alignmentX and alignmentY properties of
the two buttons dynamically. You can also set the opaque
(blocked) property of the first button. When the opaque
property is set to true, the first button blocks the scene
of the second button, as shown in Figure 31.10(a). When the
opaque property is set to false, the first button becomes
transparent to allow the second button to be seen through
the first button, as shown in Figure 31.10(b).

 (a) (b)

Figure 31.10

© Copyright Y. Daniel Liang, 2005
2

The components are overlaid in the container of OverlayLayout.

Listing 31.5 ShowOverLayLayout.java

PD: Please add line numbers in the following code
***Layout: Please layout exactly. Don’t skip the space. This
is true for all source code in the book. Thanks, AU.
<Side Remark line 26: overlay layout>
<Side Remark line 90: main omitted>

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ShowOverlayLayout extends JApplet {
 private JButton jbt1 = new JButton("Button 1");
 private JButton jbt2 = new JButton("Button 2");

 private JTextField jtfButton1AlignmentX = new JTextField(4);
 private JTextField jtfButton1AlignmentY = new JTextField(4);
 private JTextField jtfButton2AlignmentX = new JTextField(4);
 private JTextField jtfButton2AlignmentY = new JTextField(4);
 private JComboBox jcboButton1Opaque = new JComboBox(
 new Object[]{new Boolean(true), new Boolean(false)});

 // Panel p1 to hold two buttons
 private JPanel p1 = new JPanel();

 public ShowOverlayLayout() {
 // Add two buttons to p1 of OverlayLayout
 p1.setLayout(new OverlayLayout(p1));
 p1.add(jbt1);
 p1.add(jbt2);

 JPanel p2 = new JPanel();
 p2.setLayout(new GridLayout(5, 1));
 p2.add(new JLabel("Button 1's alignmentX"));
 p2.add(new JLabel("Button 1's alignmentY"));
 p2.add(new JLabel("Button 2's alignmentX"));
 p2.add(new JLabel("Button 2's alignmentY"));
 p2.add(new JLabel("Button 1's opaque"));

 JPanel p3 = new JPanel();
 p3.setLayout(new GridLayout(5, 1));
 p3.add(jtfButton1AlignmentX);
 p3.add(jtfButton1AlignmentY);
 p3.add(jtfButton2AlignmentX);
 p3.add(jtfButton2AlignmentY);
 p3.add(jcboButton1Opaque);

 JPanel p4 = new JPanel();
 p4.setLayout(new BorderLayout(4, 4));
 p4.add(p2, BorderLayout.WEST);
 p4.add(p3, BorderLayout.CENTER);

 add(p1, BorderLayout.CENTER);
 add(p4, BorderLayout.WEST);

 jtfButton1AlignmentX.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {

© Copyright Y. Daniel Liang, 2005
3

 jbt1.setAlignmentX(
 Float.parseFloat(jtfButton1AlignmentX.getText()));
 p1.revalidate(); // Cause the components to be rearranged
 p1.repaint(); // Cause the viewing area to be repainted
 }
 });
 jtfButton1AlignmentY.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 jbt1.setAlignmentY(
 Float.parseFloat(jtfButton1AlignmentY.getText()));
 p1.revalidate(); // Cause the components to be rearranged
 p1.repaint(); // Cause the viewing area to be repainted
 }
 });
 jtfButton2AlignmentX.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 jbt2.setAlignmentX(
 Float.parseFloat(jtfButton2AlignmentX.getText()));
 p1.revalidate(); // Cause the components to be rearranged
 p1.repaint(); // Cause the viewing area to be repainted
 }
 });
 jtfButton2AlignmentY.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 jbt2.setAlignmentY(
 Float.parseFloat(jtfButton2AlignmentY.getText()));
 p1.revalidate(); // Cause the components to be rearranged
 p1.repaint(); // Cause the viewing area to be repainted
 }
 });
 jcboButton1Opaque.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 jbt1.setOpaque(((Boolean)(jcboButton1Opaque.
 getSelectedItem())).booleanValue());
 p1.revalidate(); // Cause the components to be rearranged
 p1.repaint(); // Cause the viewing area to be repainted
 }
 });
 }

}

A panel p1 of OverlayLayout is created (line 21) to hold two
buttons (lines 22-23). Since Button 1 is added before Button
2, Button 1 is on top of Button 2.

The alignmentX and alignmentY properties specify how the two
buttons are aligned relative to each other along the x-axis
and y-axis (lines 51, 59). These two properties are used in
BoxLayout and OverlayLayout, but are ignored by other layout
managers. Note that the alignment is a float type number
between 0 and 1.

The opaque property is defined in JComponent for all Swing
lightweight components. By default, it is true for JButton,
which means that the button is nontransparent. So if Button
1’s opaque is true, you cannot see any other components
behind JButton 1. To enable the components behind Button 1
to be seen, set Button 1’s opaque property to false (lines

© Copyright Y. Daniel Liang, 2005
4

83-86).

.

