

Part II

SQL

SQL is the language for accessing and managing database. Using SQL proficiently is
essential for a database programmer. This part introduces fundamentals of SQL,
advanced features of SQL, creating database objects, and how to use SQL to manage
transactions, control concurrency, and maintain security.

© Copyright Y. Daniel Liang, 2005

CHAPTER
4
SQL Basics
Objectives
1. To know the history of SQL.

2. To create, modify, and drop tables.

3. To become familiar with SQL data types: varchar2,
char, number, and date.

4. To be able to define constraints and know the
differences between named constraints and unnamed
constraints.

5. To know how to obtain table information and display
constraints.

6. To know how to display and enter date values.

7. To learn to use simple SQL statements for queries and
update operations.

8. To become familiar with aggregate functions: count,
min, max, avg, and sum.

9. To become familiar with Oracle number functions,
character functions, date functions, and conversion
functions.

10. To know how to use the operators: like, between-and,
and is null.

11. To know how to use the order by clause, group by
clause, and having clause.

4.1 Introduction

In the preceding chapter, you learned how to analyze data and
relationships among data using the ER models, how to convert ER models
into the relation schemas, and how to further improve database design
using normalization. Now you are ready to create a database and
manipulate data in the database using SQL. This chapter and the next two
chapters introduce SQL.

© Copyright Y. Daniel Liang, 2005

4.2 History of SQL

SQL is an acronym for Structured Query Language. It is pronounced “S-Q-
L” or “sequel.” SQL has its roots in the System R – an experimental
relational database system developed by IBM in the early 80s. The
language used in System R was called Sequel on which the SQL language
was based. There are three versions of SQL: SQL1, SQL2, and SQL3.

SQL1 was approved by ANSI (American National Standards Institute) in
1986, and adopted by ISO (International Standards Organization) in 1987.
It was updated in 1989 with an addendum on integrity enhancements.
Almost all current RDBMS (Relational Database Management System) support
SQL1.

SQL2, adopted by ISO in 1992, contains many new features. It is an
enormous language defined in more than 600 pages. SQL2 is so ambitious
that no current database systems can support all its full features. So
three levels of SQL2 were proposed: entry level, intermediate level, and
full level. The entry level is SQL1 plus the additional improvements
such as data types, simple functions, and schema definition statements.
The intermediate level is the entry level plus some language support
such as embedded SQL, dynamic SQL, and PSM (Persistent Stored Modules).
PSM enables the user to create procedures and functions that can be used
in the queries. The full level is the entire SQL2. None of the
commercial RDBMS supports the SQL2 full level. Most of them support the
SQL2 entry level with proprietary extensions. For example, Oracle has
its own extensions for stored procedures and functions. Despite of the
differences in SQL dialects, the standard core SQL remains the same.

SQL3, adopted in 1999 by ISO, is the latest standard that incorporates
object-oriented concept into relational database schemas.

NOTE: The discussion of this chapter is based on
SQL2. Some of the new features of SQL3 that are
implemented in Oracle will also be introduced.

4.3 Creating, Modifying and Dropping Tables

Tables are the essential objects in the database. To create a table, use
the create table statement to specify a table name, attributes and their
types, primary keys, foreign keys, and constraints, as in the following
example:

create table Course(

 courseId char(5),

 subjectId char(4) not null,

 courseNumber number(4),

 title varchar2(50) not null,

 numOfCredits number(1)

 constraint ckNumOfCredits check (numOfCredits >= 1),

 constraint pkCourse primary key (courseId),

 constraint fkSubjectId foreign key (subjectId)

 references Subject(subjectId));

This statement creates the Course table with attributes courseId,
subjectId, courseNumber, title, and numOfCredits. ckNumOfCredits,

© Copyright Y. Daniel Liang, 2005

pkCourse, and fkSubjectId are the constraint names to denote the
constraints on numOfCredits, the primary key and a foreign key,
respectively.

NOTE: SQL is not case-sensitive except the
string literals enclosed in the single quotation
marks.

NOTE: The statements for creating all the tables
in the sample student information system are
included in Appendix A, “Student Information
Database Schema and Contents.”

4.3.1 Data Types

Each attribute has a data type that specifies the type of data stored in
the attribute. Table 4.1 lists some frequently used data types in
Oracle.

Table 4.1

Oracle Data Types

Type Description

varchar2(size) variant-length character data (maximum 4000 characters)

char(size) fixed-length character data (maximum 2000 characters)

number(p) integer value of precision p

number(p, s) floating-point value of precision p and scale s

date date and time value

clob character large object

blob binary large object

XMLType XML document

The varchar2 type is appropriate for storing strings of variant-length.
For example, the course title is a string whose maximum size is 25, thus
it can be defined as varchar2(25). Only the actual string is stored in
the database. If the size of the string is larger than the specified
size, an error occurs.

NOTE: Oracle also supports the varchar type,
which is same as varchar2 in Oracle 9i. In the
future version, varchar might be used as a
separate data type to define variable-length
character strings with different comparison
semantics. You should use varchar2 in Oracle 9i.

The char type is appropriate for storing strings of fixed-length. For
example, the social security number is a fixed 9-character long string,
thus it can be defined as char(9). If a string is shorter than its
declared size, spaces are appended to the end of the string to make its
length equal to the declared length. If a string is larger than its
declared size, an error occurs.

© Copyright Y. Daniel Liang, 2005

The number type is for storing numerical values. You use number(p) to
store an integer with maximum of p digits, number(p, s) to store a
fixed-size floating-point number with maximum of p - s digits before the
decimal point and maximum of s digits after the decimal point, use
number to store floating-point numbers of any size. If a value exceeds
the number of digits allowed before the decimal point, Oracle returns an
error. If a value exceeds the scale, Oracle rounds it. If the scale is
negative, the actual data is rounded to the specified number of places
to the left of the decimal point. Here are some examples:

Table 4.2

Number Type Examples

Actual Data Data Type Specified As Stored As

123.456 number(6) 123

123.456 number(6, 1) 123.5

123.456 number(6, 2) 123.47

123.456 number(6, 3) 123.456

123.456 number(6, 4) exceeds precision

123.456 number(2, -1) 120

123.456 number(2, -2) 100

123.456 number(2, -3) 0

The date type is for storing date and time value. The year, month, day,
hour, minute, and second are stored in a date value. Section 4.5,
“Entering and Displaying Date Values,” introduces the date type.

The clob type is for storing a large text in the character format. It
can be used to store up to 2 GB characters. The blob type is for storing
binary data such as image. These two types were introduced in SQL3. The
examples of using the blob type will be given in Chapter 9, “Advanced
JDBC.”

The XMLType is a new Oracle data type for storing XML documents. XML
will be introduced in Chapter 12, “XML.”

4.3.2 Constraints

Constraints are used to define the primary keys, foreign keys, and
restrictions on the attributes. Constraints can be defined with or
without names. If names are used, they must be distinctive in a table.
If a constraint is violated, the constraint name is returned and can be
used to identify the violation. If the constraint is not named, it is
difficult to identify the violation. Thus, I recommend that you use
named constraints. The following are three examples of the named
constraints:

constraint ckNumOfCredits check (numOfCredits >= 1)

constraint pkCourse primary key (courseId)

constraint fkSubjectId foreign key (subjectId)

 references Subject(subjectId));

© Copyright Y. Daniel Liang, 2005

The first constraint named ckNumOfCredits defines a constraint on the
attribute numOfCredits. This type of constraint is known as an attribute
constraint or a column constraint. The second constraint named pkCourse
defines a primary key. This is known as the primary key constraint. Each
table can have only one primary key constraint. The third constraint
named fkSubjectId defines a foreign key. Each table may have many
foreign keys.

NOTE: In the relational database theory, no
duplicate tuples are allowed. In practice,
however, all RDBMS allows duplicates. Therefore,
it is permissible to create a table without
primary keys. To enforce no duplicates, specify
a primary key or a unique attribute in the
table.

4.3.2.1 Column-Level and Table-Level Constraints
A constraint can be defined when a table is created, or added later. It
can also be dropped or modified. Constraints can be defined at column-
level or table-level.

A column-level constraint specifies a constraint on a single column and
it is defined along with the definition of the column. Any constraint
that involves a single attribute can be defined at column-level. The
following constraints are defined at column-level:

courseId char(5) constraint pkCourse primary key,

subjectId char(4)

 references Subject(subjectId),

numOfCredits number(1)

 constraint ckNumOfCredits check (numOfCredits >= 1)

A table-level constraint specifies a constraint on one or more columns,
and it is defined separately from the definitions of columns. If a
constraint references more than one column, it must be defined at table-
level. A table-level constraint can be defined after all its referencing
columns are defined, and it is normally defined after all columns are
defined. The preceding three constraints can be defined at table-level
as follows:

constraint pkCourse primary key (courseId),

constraint fkSubjectId foreign key (subjectId)

 references Subject(subjectId),

constraint ckNumOfCredits check (numOfCredits >= 1)

NOTE: Every column-level constraint can be
defined at table-level. The syntax of column-
level constraints is slightly different from the
table-level constraints.

4.3.2.2 Attribute Constraints
Three types of attribute constraints can be specified: not null
constraint, unique key constraint, and check constraint.

A not null constraint specifies that the attribute value cannot be null.
null is a special value in the database, meaning not known or not

© Copyright Y. Daniel Liang, 2005

applicable. If an attribute is part of the primary key, it automatically
has the not null constraint. The following clause specifies that
subjectId is not null.

subjectId char(4) constraint nnSubjectId not null

A unique key constraint specifies that every tuple has a distinct value
on an attribute or a set of attributes. The unique attribute or the set
of attributes is called a unique key. The following clause specifies
that title is unique.

title varchar2(50) constraint ukTitle unique (title)

The following clause specifies that subjectId and courseNumber together
form a unique key:

constraint uk unique (subjectId, courseNumber)

A check constraint specifies a rule on a single column. A column can
have more than one check constraints. The following clause specifies
that title is unique.

title varchar2(50) constraint ukTitle unique (title)

The following clause specifies that subjectId and courseNumber together
form a unique key:

constraint uk unique (subjectId, courseNumber)

4.3.3 Default Values

You can specify a default value on an attribute. The default value is
used when a null value is inserted. The following clause specifies the
default value for numOfCredits is 3.

numOfCredits number(1) default 3

4.3.4 Displaying Table Information

Database not only stores the contents of the tables, but also the
definition of the tables. User tables are stored in a system table named
User_Tables. Whenever a table is created, the table name is added to the
table by the system. To find all tables created by the user, use the
command select table_name from User_Tables as shown in Figure 4.1.

© Copyright Y. Daniel Liang, 2005

Figure 4.1

You can retrieve table names from the User_Tables table.

To display the column definition in a table, use the describe command in
Oracle. Figure 4.2 shows the information for the Course table. The
command displays table column names, data types and whether columns can
be null.

Figure 4.2

You can use the describe command to display table
information.

The information on constraints is stored in a system table named
User_Constraints. The following statements display the constraint names,
constraint types, and search conditions for all constraints in the
Course table, as shown in Figure 4.3.

column constraint_name format a15;

column constraint_type format a15;

© Copyright Y. Daniel Liang, 2005

column search_condition format a25;

select constraint_name, constraint_type, search_condition

from User_Constraints

where table_name = 'COURSE';

Figure 4.3

You can view constraints information from the
User_Constraints table.

The statement
column constraint_name format a15;

is an Oracle-proprietary command that specifies that the constraint_name
should be displayed in width of 15 characters. The column command will
be further discussed in Section 4.?, “Formatting Columns.”

If a constraint is not named, Oracle automatically assigns a name
internally. For example, SYS_C002797 is assigned automatically by Oracle
for constraints “SUBJECTCODE” IS NOT NULL. Constraint type C stands for
column constraints, P stands for primary key constraints, and R stands
for foreign key constraints.

NOTE: All the database meta data is stored in
upper case. Thus, table Course is stored as
COURSE in the User_Constraints table. Therefore,
you have to use the string 'COURSE' in the
query.

4.3.5 Dropping, Renaming and Truncating Tables

If a table is no longer needed, it can be dropped permanently using the
drop table command. For example, the following statement drops the
Course table.

drop table Course;

If a table to be dropped is referenced by other tables, you can use the
cascade constraints clause in the drop table command to force the table
to be drop. For example, the following statement drops the Subject table
and all referential integrity constraints that refer to the primary key
in the Subject table.

drop table Subject cascade constraints;

© Copyright Y. Daniel Liang, 2005

If you omit this clause, Oracle returns an error and does not drop the
table, since the Subject table is referenced by other tables.

You can remove all rows in a table using the truncate table statement.
For example, the following statement removes all rows from the Course
table.

truncate table Course;

NOTE: Removing rows with the truncate statement
can be more efficient than dropping and re-
creating a table. Dropping and re-creating a
table invalidates the table’s dependent objects,
requires you to re-grant object privileges on
the table, and requires you to re-create the
table’s indexes, integrity constraints, and
triggers and re-specify its storage parameters.
Truncating has none of these effects.

You can rename a table using the rename table statement. For example,
the following statement renames Course to NewCourse.

rename Course to NewCourse;

All the referential integrity constraints that are dependent on the
renamed table are automatically modified to reference the new table.

4.3.6 Altering Table Definitions

Occasionally, you need to alter table definitions to accommodate changes
in the database. You can add or drop a column, add or drop a constraint,
enable or disable a constraint, and increase the size of an attribute.

The following command adds a new column into the Course table.

alter table Course add newTitle varchar2(50);

You can drop a column provided it is not the only column in the table.
The following command drops an existing column named newTitle from the
Course table.

alter table Course drop column newTitle;

The following command adds a new constraint to the Course table.

alter table Course

 add constraint uk unique (subjectId, courseNumber);

The following command drops an existing constraint from the Course
table.

alter table Course drop constraint uk;

The following command modifies the data type of numOfCredits to
number(5) with default value 3.

© Copyright Y. Daniel Liang, 2005

alter table Course modify numOfCredits number(5) default 3;

A constraint can be disabled or enabled, as shown in the following
examples:

alter table Course disable constraint fkSubjectId;

alter table Course enable constraint fkSubjectId;

NOTE: If an altering table command affects the
constraints in other tables, Oracle will
generate an error and no change is done. To
force the change, use the cascade constraints
clause. For example, the following command
forces the primary key column subjectId to be
dropped from the Subject table and the foreign
key constraint in the Course table that
references subjectId is also dropped.

alter table Subject drop column subjectId cascade constraints;

***End of NOTE

TIP: If two tables T1 and T2 reference each
other in the foreign keys. You can create the
table without specifying foreign keys and later
add the foreign key constraints using the alter
table command.

4.4 Simple Insert, Update and Delete

Once a table is created, you can insert records into the table. You can
also update and delete records. This section introduces simple insert,
update and delete statements. More advanced features will be introduced
in Chapter 5, “Advanced SQL.”

The general syntax to insert a record into a table is

insert into tableName [(column1, column2, …, column]]

 values (value1, value2, …, valuen);

For example, the following statement inserts a record into the Course
table. The new record has the courseId '11113', subjectId 'CSCI',
courseNumber 3720, title 'Database Systems', and creditHours 3.

insert into Course (courseId, subjectId, courseNumber, title)

 values ('11113', 'CSCI', '3720', 'Database Systems', 3);

The column names are optional. If the column names are omitted, all
column values for the record must be entered even though the columns
have default values. String values are case-sensitive and enclosed
inside single quotation marks.

The general syntax to update a table is

© Copyright Y. Daniel Liang, 2005

update tableName

 set column1 = newValue1 [, column2 = newValue2, ...]

 [where condition];

For example, the following statement changes the numOfCredits for the
course whose title is Database Systems to 4.

update Course

 set numOfCredits = 4

 where title = 'Database Systems';

The general syntax to delete the records in a table is

delete [from] tableName

 [where condition];

For example, the following statement deletes the Database Systems course
from the Course table:

delete Course

 where title = 'Database System';

The following statement deletes all records from the Course table:

delete Course;

NOTE: You need to issue the commit command to
end the current transaction and make permanent
all changes by the insert, update, and delete
operations. The truncate command is a DDL
command. All DDL commands are committed once
they are executed.

NOTE: The ampersand (&) is a special Oracle
character. It can be used to define variables in
SQL. If you enter a string that consists of an
ampersand (&) character, use the set define off
command to suspend the special character from
SQL*Plus. The special character cannot be turned
off from iSQL*Plus.

4.5 Entering and Displaying Date Values

You can enter a date value using the default format or a custom format.
The default date format for entering date is 'DD-MON-YY' or 'DD-MON-
YYYY', where DD represents the day of month, MON represents the first
three letters of the month capitalized, YY represents the last two
digits of the year, and YYYY represents the full year value. By default,
the time is 12:00:00 AM. The following statement inserts birth date
October 9, 1969 for a student:

insert into Student (ssn, birthDate)

 values ('444112222', '9-OCT-69');

© Copyright Y. Daniel Liang, 2005

NOTE: When you use the format 'DD-MON-YY' to
enter a date, if YY is less than 50, YY is in
the current century; if YY is greater or equal
to 50, YY is in the previous century. So, '9-
OCT-49' represents 9-OCT-2049, but '9-OCT-69'
represents '9-OCT-1969'.

The default date format for displaying date is 'DD-MON-YY'. You can
enter or display date in a custom format using the date functions
to_date and to_char.

The to_date function converts a string to a date equivalent. For
example, the following statement inserts a complete date and time using
the to_date function with the format 'YYYY MM DD HH24:MI:SS':

insert into Student (ssn, birthDate)

 values ('444112222',

 to_date('1969 10 9 17:35:24', 'YYYY MM DD HH24:MI:SS'));

The to_char function converts a date to a string. For example, the
following statement displays date in the format 'YYYY MM DD HH24:MI:SS':

select ssn, to_char(birthDate, 'YYYY MM DD HH24:MI:SS')

from Student;

The format string consists of the date and time elements supported in
Oracle. Section 4.7.2.4, “Conversion Functions,” discusses the date
format in details.

NOTE: You can set the default format using the
alter session command. For example, the
following Oracle statement sets the default
format to 'YYYY MM DD HH24:MI:SS'.

alter session

 set nls_date_format = 'YYYY MM DD HH24:MI:SS';

Now you can insert a date using the default
format as follows:

insert into Student (ssn, birthDate)

 values ('444112222', '1969 10 9 17:35:24');

***End of NOTE

4.6 Simple Queries

To retrieve information from tables, use the select statement with
following syntax:

select column-list

 from table-list

 [where condition];

© Copyright Y. Daniel Liang, 2005

The select clause lists the columns to be selected. The from clause
refers to the tables involved in the query. The where clause specifies
the conditions for the selected rows.

There are many options and flavors in a select statement. This chapter
introduces simple queries. Complex queries will be introduced in the
next chapter.

4.6.1 Comparison and Boolean Operators

SQL has the six comparison operators, as shown in Table 4.3, and three
Boolean operators, as shown in Table 4.4.

Table 4.3

Comparison Operators

Operator Description

= Equal to

<> or != Not equal to

< Less than

<= Less or equal to

> Greater than

>= Greater than

Table 4.4

Boolean Operators

Operator Description

not logical negation

and logical conjunction

or logical disjunction

NOTE: The comparison and Boolean operators in
SQL have the same meaning as in Java. In SQL the
equals to operator is =, but it is == in Java.
In SQL the not equal to operator is <> or !=,
but it is != in Java. The not, and, and or
operators are !, && (&), and || (|) in Java.

Example 4.1: Get the names of the students who were born after 1969 and
live in the zip code 31411. The query result is shown in Figure 4.4.

select firstName, mi, lastName

from Student

where birthDate >= '01-JAN-1969' and zipCode = '31411';

© Copyright Y. Daniel Liang, 2005

Figure 4.4

Example 4.1 demonstrates using comparison and Boolean
operators.

birthDate is compared with '01-JAN-1969'. '01-JAN-1969' is not a string,
but a date with the default format 'DD-MON-YYYY'. zipCode is a string,
which is compared with '31411'.

NOTE: To select all attributes from a table, you
don’t have to list all attribute names in the
select clause. You can just specify an asterisk
(*), which stands for all attributes. For
example, the following query displays all
attributes of the students who were born after
1969 and live in the zip code 31411:

select *

from Student

where birthDate >= '01-JAN-1969' and zipCode = '31411';

***End of NOTE

4.6.2 The like, between-and, and is null Operators

SQL has the like operator that can be used for pattern matching. The
syntax to check if a string s has a pattern p is

s like p or s not like p

You can use wild card characters % (percent symbol) and _ (underline
symbol) in the pattern p. % matches zero or more characters and _
matches any single character in s. For example, lastName like '_mi%'
matches any string with the second and third letters being m and i.
lastName not like '_mi%' excludes any string whose the second and third
letters are m and i.

The between-and operator checks whether a value v is between two other
values v1 and v2 using the following syntax:

© Copyright Y. Daniel Liang, 2005

v between v1 and v2 or v not between v1 and v2

v between v1 and v2 is equivalent to v >= v1 and v <= v2 and v not
between v1 and v2 is equivalent to v < v1 and v > v2.

The is null operator checks whether a value v is null using the
following syntax:

v is null or v is not null or

Example 4.2: Get the name and birth date of the students who were born
between 1969 and 1974 or unknown, last name begins with the letter 'S',
and phone is not null. The query result is shown in Figure 4.5.

select firstName, mi, lastName, birthDate

from Student

where (birthDate between '01-JAN-1969' and '01-JAN-1974' or

birthDate is null) and lastName like 'S%' and phone is not null;

Figure 4.5

Example 4.2 demonstrates the like, between-and and is null
operators.

4.6.3 Column Alias

When a query result is displayed, SQL uses the column names as the
column heading. Usually the user gives abbreviated names for the columns
and the columns cannot have spaces when the table is created. Sometime,
it is desirable to give more descriptive names in the result heading.
You can use the column aliases with the following syntax:

select columnName [as] alias

Example 4.3: Get the last name and birth date of the students whose last
name’s second letter is t. Display the column heading as Last Name and
Birth Day. The query result is shown in Figure 4.6.

select lastName as "Last Name", birthDate as "Birth Day"

© Copyright Y. Daniel Liang, 2005

from Student

where lastName like '_t%';

Figure 4.6

Example 4.3 demonstrates the column alias.

NOTE: The as keyword is optional. An alias can
also appear without the quotation marks. For
clarity, I recommend to use the as keyword with
the alias in the quotation marks.

4.6.4 The Arithmetic Operators

You can use the arithmetic operators * (multiplication), / (division), +
(addition), and – (subtraction) in SQL.

Example 4.4: Assume each credit hour is 50 minutes of lectures, get the
total minutes for each course with the subject CSCI. The query result is
shown in Figure 4.7.

select title, 50 * numOfCredits as "Lecture Minutes Per Week"

from Course

where subjectId = 'CSCI';

© Copyright Y. Daniel Liang, 2005

Figure 4.7

Example 4.4 demonstrates the arithmetic operators.

4.6.5 The Concatenation Operator (||)

SQL provides the concatenation operator (||) that can be used to combine
columns with numbers and strings. For example, you can display last
name, mi, and first name together in one string, instead of three
strings.

Example 4.5: List the full name of the students whose area code of the
phone number is 707. The query result is shown in Figure 4.7.

select firstName || ' ' || mi || ' ' || lastName as Name

from Student

where phone like '707%';

Figure 4.7

Example 4.5 demonstrates the concatenation operator.

4.6.6 Displaying Distinct Tuples

SQL provides the distinct keyword that can be used to suppress duplicate
tuples in the output. For example, the following statement displays all
subject IDs that are used by the courses.

select subjectId as "Subject ID"

from Course;

This statement displays all subject ID, as shown in Figure 4.8. To
display distinct tuples, add the distinct keyword in the select clause
as follows:

select distinct subjectId as "Subject ID"

 from Course;

This statement displays distinct subject ID, as shown in Figure 4.8.

© Copyright Y. Daniel Liang, 2005

Figure 4.8

You can use the distinct keyword to suppress duplicates.

When there is more than one item in the select clause, the distinct
keyword applies to all the items to find the distinct tuples. As shown
in Figure 4.9, the first statement displays mi and lastName for all
students in the CS or EDUC departments with duplicates and the second
statement displays the same tuples without duplicates.

© Copyright Y. Daniel Liang, 2005

Figure 4.9

The distinct keyword applies to all items in the select
clause.

NOTE: By definition null values are unknown and
cannot be compared with each other, but distinct
treats null values are the same. Therefore, if
multiple selected tuples are null, only one is
displayed.

4.6.7 Displaying Sorted Tuples

SQL provides the order by clause to sort the output using the following
general syntax:

select column-list

from table-list

[where condition]

[order by columns-to-be-sorted];

In the syntax, columns-to-be-sorted specifies a column or a list of
columns to be sorted. By default, the order is ascending. To sort in
descending order, append the desc keyword. Similarly, you can append the

© Copyright Y. Daniel Liang, 2005

asc keyword, but it is not necessary. When multiple columns are
specified, the rows are sorted based on the first column, then the rows
with the same values on the second column are sorted based on the second
column, and so on.

Example 4.6: List the full name of the students whose area code of the
phone number is 912, ordered primarily on the last name in descending
order and secondarily on the first name in ascending order. The query
result is shown in Figure 4.10.

select lastName || ', ' || firstName as "Full Name"

from Student

where phone like '912%'

order by lastName desc, firstName asc;

Figure 4.10

Example 4.6 demonstrates the order by clause.

NOTE: The columns-to-be-sorted list may contain
any columns in the table, not necessarily to be
in the selected column-list.

NOTE: When null values are sorted, they are
ordered last in Oracle.

4.7 SQL Functions

SQL functions can be used in SQL query to extend the power of SQL. A SQL
function takes zero or more arguments and returns a single value. There
are five standard SQL functions supported by all RDBMS. Oracle supports
many other useful functions.

4.7.1 Standard SQL Functions

© Copyright Y. Daniel Liang, 2005

Five standard SQL functions are count, max, min, avg, and sum. count
returns the number of rows, max, min, avg, and sum find the maximum,
minimum, average, and sum of all values in a column ignore null values.
These functions are known as aggregate functions or group functions
because they operate on a group of rows and return a single value.

Example 4.7: List the number of faculty, minimum salary, maximum salary,
average salary, and total salary. The query result is shown in Figure
4.11.

select count(*) as "Number of Faculty", min(salary) as

 "Minimum Salary", max(salary) as "Max Salary", avg(salary)

 as "Average Salary",

 sum(salary) as "Total Salary"

from Faculty;

Figure 4.11

Example 4.7 demonstrates standard SQL aggregate functions.

NOTE: If no row meets the query condition, count
returns 0, and the other functions all return
null.

NOTE: You can use distinct with any aggregate
functions except count(*). For example,

select sum(distinct salary)

from Faculty;

finds the average of distinct salary. Note there
is no need to use distinct with min and max
functions because the maximum distinct salary is
the same as the maximum salary.

***End of NOTE

© Copyright Y. Daniel Liang, 2005

NOTE: The null values are ignored in the
aggregate functions except count(*) that counts
each row including the row with null values.

NOTE: The aggregate functions cannot be used in
the where clause. For example, the following
statement is erroneous.

select lastName

from Faculty

where salary = max(salary);

***End of NOTE

4.7.2 Oracle SQL Functions

Oracle provides many proprietary functions to extend the power of SQL.
These functions can be classified into number functions, character
functions, date functions, conversion functions, and miscellaneous
functions. These functions are known as single-row functions because
they operate on a single value or a single column in a row.

4.7.2.1 Number Functions

A number function takes a number or a column of a numeric type as an
argument and returns a numeric value. Table 4.5 lists some frequently
used number functions.

Table 4.5 Number Functions
Function Name Description Example
abs(x) absolute value of x abs(-5.5) is 5.5

ceil(x) smallest integer greater ceil(-5.5) is -5

 than or equal to x ceil(5.5) is 6
cos(x) trigonometric cosine of x cos(0) is 1

 (x in radians) cos(3.14195/2) is 0

exp(x) ex (x in radians) exp(2) is 7.38906

floor(x) largest integer less floor(5.5) is 5

 than or equal to x floor(-5.5) is -6

ln(x) natural logarithm of x ln(2.718282) is 1

 (base e)

log(m, n) log
m
n log(10, 100) is 2

mod(m, n) remainder of m divided mod(4, 2) is 0

 by n mod(4, 3) is 1
power(m, n) mn power(2, 3) is 8

round(x) round x to an integer round(5.5) is 6

round(x, d) round x to d places right of round(5.567, 1) is 5.6

 the decimal point. round(5.567, 2) is 5.57

sign(x) returns 1 if x > 0, 0 if sign(-3) is -1

 x is 0, and -1 if x < 0 sign(3) is 1

sin(x) trigonometric sine of x sin(0) is 0

 (x in radians) sin(3.14195/2) is 1

sqrt(x) square root of x sqrt(4) is 2

tan(x) trigonometric tangent of x tan(0) is 0

 (x in radians) cos(3.14195/2) is 1

trunc(x) truncate x to an integer trunc(5.5) is 5

© Copyright Y. Daniel Liang, 2005

trunc(x, d) truncate x to d decimal places trunc(5.546, 2) is 5.54

You can use the functions in an expression. To display the result of an
expression, use a select statement as follows:

select exp
from tableName;

You can use any tables. The result is displayed as many times as the
number of the rows in the table. Oracle has a dummy table named Dual,
which is automatically created along with the data dictionary. Dual is
owned by the user SYS, but is accessible by the name Dual to all users.
It has one column named dummy, defined to be varchar2(1), and contains
one row with a value 'X'. Selecting from the Dual table is useful for
computing an expression with a select statement. Because Dual has only
one row, the result of an expression is returned only once. The
following statement (shown in Figure 4.12) shows several examples of
using number functions.

select round(3.5), sqrt(4), ln(10), sin(3.14/2), power(2, 4) from Dual;

Figure 4.12

You can use the Dual table to display the result of
expressions.

4.7.2.2 Character Functions

A character function takes a number, a string or a column of a string
type or numeric type as an argument and returns a string or a numeric
value. Tables 4.6 and 4.7 list the character functions that return
character values and return numerical values, respectively.

Table 4.6 Character Functions Returning Character Values
Function Name Description Example
chr(n) returns a character whose On ASCII-based machine,

 code is n based on the chr(67) is 'C' and

 machine’s native coding on EBCDIC-based machine,

 system chr(195) is 'C'

concat(s1, s2) combines string s1 with s2. concat('Java ', 'Oracle ')
 This function is the same as is 'Java Oracle'

 the || operator

initCap(s) converts the first letter initCap('java oracle') is

© Copyright Y. Daniel Liang, 2005

 of each word to uppercase, 'Java Oracle'

 all other letters to

 lowercase.

lower(s) converts each letter to lower('Java Oracle') is

 lowercase. java oracle

lpad(s1, n, s2) left-pad s1 with s2 to lpad('Java', 8, 'Ja') is

 total width of n 'JaJaJava'

ltrim(s) removes left blanks ltrim(' Java ') is

 'Java '

replace(s1, s, r) replaces s with r in s1 replace('Java Oracle',

 'a', 'b') is

 'Jbvb Orbcle'

lpad(s1, n, s2) right-pad s1 with s2 to rpad('Java', 8, 'Ja') is

 total width of n 'JavaJaJa'

rtrim(s) removes right blanks rtrim(' Java ') is

 ' Java'

trim(s) removes left and right blanks trim(' Java ') is

 'Java'

upper(s) converts each letter to upper('Java Oracle') is

 uppercase. 'JAVA ORACLE'

Table 4.7 Character Functions Returning Numeric Values
Function Name Description Example
ascii(c) returns an ASCII code for ascii('a') is 97

instr(s1, s2) if s2 is a substring of s1, instr('Java', 'a') is 2 and

 return the index of the first instr('Java', 'b') is 0

 character where a matching

 occurs. Otherwise, return 0

length(s) returns the length of string s length('Java Oracle') is 11

4.7.2.3 Date Functions

A date function operates on values of the date type. All
date functions return a date or interval value of date type,
except the months_between function, which returns a number.
Some frequently used date functions are listed in Table 4.8.

Table 4.8 Date Functions
Function Name Description Example
add_months(d, m) adds number of months m add_months('9-DEC-2002', 1)

 returns '9-JAN-03'

current_date returns the current date

© Copyright Y. Daniel Liang, 2005

last_day(d) returns the last date of last_day('9-DEC-2002') is

 the month in date d '31-DEC-2002'

months_between(d1, d2) returns the number of months_between('9-DEC-2001',

 months between dates '9-DEC-2002') is -12

 d1 and d2 months_between('9-DEC-2002',

 '9-DEC-2001') is 12

sysdate returns the current date

trunc(d, format) truncates a date d into a

 specified format

Example 4.8: Display the ages of all students whose last name has a
string 'ON' in lowercase or uppercase. The query result is shown in
Figure 4.13.

select concat(concat(firstName, ' '), lastName) as "Name",

 trunc(months_between(sysdate, birthdate)/12) as "Age"

from Student

where instr(upper(lastName), 'ON') <> 0;

Figure 4.13

Example 4.8 demonstrates Oracle SQL character functions.

4.7.2.4 Conversion Functions

A conversion function converts a value from one data type to
another. Table 4.9 lists some frequently used conversion
methods.

Table 4.9 Conversion Functions
Function Name Description Example
to_char(d, fmt) converts a date value d to_char(current_date,

 into a string with the 'MON DD, YYYY')

 specified format fmt

to_char(n, fmt) converts a number n into a to_char(-10000,

 string with the specified 'L99G999D99MI') is

© Copyright Y. Daniel Liang, 2005

 format fmt 10,000.00-

to_date(s, fmt) converts a string s into a to_date('Feb 14, 2002',

 number with the specified 'MON DD, YYYY')

 format fmt

Tables 4.10 and 4.11 list the some frequently used number and date
formats.

Table 4.10 Number Formats
Format Description Example
9 a number 9999

0 a leading zero 0009999

EEEE scientific notation 999EEEE

D decimal point (.) 9D99

G group separator (,) 9G99

L currency symbol L999

MI minus sign 999MI

PR puts negative number in 999PR

Table 4.11 Date Formats
Format Description
MM two-digit month

MON first three letters of the month

MONTH month name using 9 characters

 padded with blanks on the left

RM month in Roman numerals

Q quarter of the year (1, 2, 3, 4)

YEAR year spelled out completely

Y one-digit year

YY two-digit year

YYY three-digit year

YYYY four-digit year

W week number of the month

WW week number of the year

D day of week

DD day of month

DDD day of year

DAY name of day using nine characters

 padded with blanks on the left

HH or HH12 hour of day (0-12)

HH24 hour of day (0-23)

MI minute (0-59)

SS second (0-59)

Here are two examples of using the number and date formats. Their output
is shown in Figure 4.14.

select to_char(-12345.6789, '99G999D99PR') as "Num 1",

 to_char(-12345.6789, 'L9D99EEEE') as "Num 2" from Dual;

select to_char(sysdate, 'D, DD, DDD, W, WW, MONTH DD, YEAR,

© Copyright Y. Daniel Liang, 2005

 HH:MI:SS')

 from Dual;

Figure 4.14

Numbers and dates are displayed in the specified formats.

4.7.2.5 Miscellaneous Functions

Oracle has several other functions that do not fall into the
category in the preceding sections. They are called
miscellaneous functions. Two useful miscellaneous functions
are nvl and decode. nvl(exp1, exp2) returns exp2 if exp1’s
value is null, otherwise exp1’s value is returned. This
function is useful to give descriptive names for null
values.

Example 4.9: Display the students whose phone number is null in
increasing order of their last name. Display “Not Known” for null
values. The query result is shown in Figure 4.15.

select firstName || ' ' || lastName as "Name",

 nvl(phone, 'Not Known') as "Phone Number"

from Student

where phone is null

order by lastName;

© Copyright Y. Daniel Liang, 2005

Figure 4.15

Example 4.9 demonstrates the nvl function.

NOTE: By default, null value is displayed as an empty
string in SQL*Plus and iSQL*Plus.

The decode function is like a Java switch statement.
decode(exp, value1, result1, [value2, result2, ...], [,
default]) compares exp to each value value1, value2, If
exp is equal to a value, Oracle returns the corresponding
result. If no match is found, Oracle returns default, or, if
default is omitted, returns null.

Example 4.10: Increase the salary for MATH faculty by 10%, for CS
faculty by 20%, and for others by 15%.

update Faculty

set salary =

 decode(deptCode, 'MATH', salary * 1.1,

 'CS', salary * 1.2, salary * 1.15);

4.8 The group by clause

Rows can be divided into groups. You can apply aggregate
functions in each group. For example, to find the total
number of faculty in each department, you need to group
faculty into departments and count faculty in each
department. SQL provides the group by clause to group rows
using the following syntax:

select column-list

from table-list

[where condition]

[group by columns-to-be-grouped]

© Copyright Y. Daniel Liang, 2005

[order by columns-to-be-sorted];

The group by clause specifies how the rows are grouped. The
group by clause is often used with the aggregate functions.

Example 4.11: Get the number of faculty, total salary, maximum salary,
minimum salary, and average salary in each department. The query result
is shown in Figure 4.16.

select deptId, count(*), sum(salary), max(salary),

 min(salary), avg(salary)

from Faculty

group by deptId;

Figure 4.16

Example 4.11 demonstrates the group by clause.

NOTE: The columns to be grouped don’t have to
appear in the select clause. However, if you use
an aggregate function in the select clause, all
the individual columns in the select clause must
be in the group by clause.

4.9 The having Clause

Sometimes, you don’t need all the groups. You can use the
having clause to restrict groups. The syntax is as follows:

select column-list

from table-list

[where condition]

[group by columns-to-be-grouped]

[having condition]

[order by columns-to-be-sorted];

© Copyright Y. Daniel Liang, 2005

Example 4.12: Get the number of faculty, total salary, maximum salary,
minimum salary, and average salary in each department except the CS
department and the department with only one faculty. The query result is
shown in Figure 4.17.

select deptId, count(*), sum(salary),

 max(salary), min(salary), avg(salary)

from Faculty

group by deptId

having deptId <> 'CS' and count(*) > 1;

Figure 4.17

Example 4.12 demonstrates the having clause.

NOTE: The having clause must always follow the
group by clause and the conditions are related
to the groups not individual rows.

4.10 Formatting Query Results

Standard SQL does not allow you to format query results
except using the alias. Oracle SQL*Plus allows you to change
column headings, specify column width, and format column
data.

4.10.1 Changing Column Headings

SQL*Plus uses column or expression names as default column
headings when displaying query results. You may use the
alias in the select clause to change the column heading, or
use the following command:

column column_name heading column_heading

© Copyright Y. Daniel Liang, 2005

For example, to produce a report with new headings specified
for lastName and birthDate for students whose last name
begins with letter C, enter the following command:

column lastName heading "Last Name"

column birthDate heading "Birth Date"

select lastName, birthDate

from Student

where lastName like 'C%';

The output is shown in Figure 4.18

Figure 4.18

You can use the column command to specify a new heading.

You can display column headings in multiple lines by using
the vertical bar symbol (|) to separate headings. For
example, to display heading “Last Name” and “Birth date” in
two separate lines, use the following command (See Figure
4.19):

column lastName heading "Last|Name"

column birthDate heading "Birth|Date"

© Copyright Y. Daniel Liang, 2005

Figure 4.19

You can use the vertical bar to separate column headings.

To change the character used to underline each column
heading, set the UNDERLINE variable of the set command to
the desired character. For example, the following command
changes the underline character to the equal sign (=).

set underline =

Figure 4.20 shows an output using with a new underline
character *.

Figure 4.20

You can use a different underline character.

4.10.2 Formatting Number Columns

You can display numbers in the specified format using the
following command:

column columnName format formatStyle

The formatStyle can contain currency symbols, 9s and commas.
For example, the following command displays salary in US
currency.

column salary format $9,999,999

The output is shown in Figure 4.21.

© Copyright Y. Daniel Liang, 2005

Figure 4.21

You can format numbers.

4.10.3 Formatting Character Types

The default width of a column is the width of the column in
the database. To specify a width, use the following command:

column columnName format width

The width parameter specifies a number for the width of the
column displayed. For example, the following command
displays last name in 10 characters width.

column lastName format A10

The output is shown in Figure 4.22.

Figure 4.22

© Copyright Y. Daniel Liang, 2005

You can specify the width for character data.

NOTE: The specified format will stay in effect
until you enter a new one; reset the column’s
format with

column lastName clear

or exit from SQL*Plus.

***End of NOTE

Chapter Summary

This chapter introduced SQL basics. You learned how to create, modify,
and drop tables. You learned how to use SQL data types, how to define
constraints tables, and how to use simple statements for queries and
update operations. You learned how to use SQL aggregate functions
(count, min, max, avg, and sum), and Oracle number, character functions,
date, and conversion functions. You learned how to use the order by
clause to sort output, the group by clause to group rows, and the having
clause to restrict rows. You also learned to format display using the
column command in Oracle SQL*Plus.

Review Questions

4.1 Describe SQL1, SQL2, and SQL3.

4.2 What is the maximum size for the varchar2 type? What is the maximum
size for the char type?

4.3 After a table is created, can you add a new column or drop an
existing column?

4.4 What types of constraints can you define? Can you define the
constraints using the create table statement? Can you add a constraint
or drop a constraint after a table is created?

4.5 What are column-level constraints and table-level constraints?

4.6 What are the differences between a named constraint and an unnamed
constraint?

4.7 Can you enable or disable a constraint?

4.8 How do you specify default values on attributes?

4.9 How do you display all user tables in Oracle?

4.10 How do you display table definition for a given table?

4.11 How do you display constraints for a given table?

4.12 What is the difference between the drop table command and the
truncate table command?

4.13 How do you rename a table? Does renaming a table affect all the
dependents of the table?

© Copyright Y. Daniel Liang, 2005

4.14 If two tables T1 and T2 reference each other in the foreign keys,
how do you create these two tables?

4.15 How do you commit a DML statement? Is a DDL statement automatically
committed?

4.16 What are the differences between aggregate functions and Oracle
number functions?

4.17 How do you display distinct rows in the output?

4.18 How do you sort the output?

4.19 What is the group by clause for? What is the having clause for?

4.20 How do you format numbers and strings in the query output?

Exercises

4.1 Create a table named Card with the following columns:

cardNo: integer value, primary key
creditLimit: floating-point value with two decimal points, default to
10000
currentBalance: floating-point value with two decimal points, default to
0
since: date indicating when the credit was started

Create a table named Customer with the following columns:

ssn: fixed-length nine characters
cardNo: integer value, foreign key in the Card table
lastName: variant-length 25 characters maximum, not null
mi: single character
firstName: variant-length 25 characters maximum

(ssn and cardNO together form the primary key)

4.2 Alter the Card table as follows:

a. Add a new column named overDue whose type is floating-point value
with two decimal digits.

b. Add a new constraint to specify that creditLimit is no more than
10000.

4.3 Insert the following records into the Card and Customer tables.

***PD: Create two tables Card and Customer

Card Table

© Copyright Y. Daniel Liang, 2005

Customer Table

4.4 Get the cardNo for all cards created since Jan 1, 1990 with current
balance more than 5000.

4.5 Get the cardNo for all cards created between Jan 1, 1990 and March
1, 1990 and the current balance is not null.

4.6 Get the ssn for all customers whose last name begins with the letter
S.

4.7 Assume the interest rate is 15% on over due. Display the interest
charge on overdue amount for all credit cards.

4.8 List the full name of the customer who has at least one credit card.

4.9 List the full name of the customer, ordered primarily on the last
name in descending order and secondarily on the first name in ascending
order. (Hint: Use the order by clause.)

4.10 List the minimum current balance, maximum current balance, average
current balance, and total current balance in the Card table.

4.11 Display the customers whose last name has a string 'sm' in
lowercase or uppercase. (Hint: Use the lower or upper function.)

4.12 Display the cardNo and the date when the card was created. Display
“1-JAN-1990” for null date values. (Hint: Use the nvl function.)

4.13 List the card number, creditLimit, and whether is over the limit.
If the overdue is greater than the limit, display “over the limit,”
otherwise, display “under the limit.” (Hint: Use the decode function.)

4.14 List customer name and the number of cards that belong to the same
customer. (Hint: Use the group by clause.)

4.15 List customer with at least two cards. (Hint: Use the group by and
having clauses.)

4.16 Format the overdue column to display in US currency. Format the
lastName column to display only 10 characters.

© Copyright Y. Daniel Liang, 2005

© Copyright Y. Daniel Liang, 2005

