
CHAPTER

5

Advanced SQL

Objectives
• To write queries using nested select statements.

• To write quires using joins.

• To use table aliases to join same tables.

• To use the in, all, any, exists and unique operators
for conditions involving sets.

• To understand the various join operations: natural
join, inner join, left outer join, right outer join,
and full outer join.

• To use the union, union all, intersect, and minus set
operators.

• To create and use views.

• To understand the Oracle rowId and rowNum columns.

• To create and use indexes and clusters.

• To create and use database links for distributed
quires.

• To create and use synonyms for database objects.

• To create and use sequences.

5.1 Introduction

In the preceding chapter, you learned simple SQL statements,
SQL functions, the order by clause, the group by clause, and
the having clause. The SQL statements in the preceding
chapter use one select clause that involves a single table.

© Copyright Y. Daniel Liang, 2005 1

This chapter introduces nested queries and the queries that
involve multiple tables. You will also learn how to create
and use views, indexes, clusters, sequences, and database
links.

5.2 Nested Queries

A select clause can be nested inside another select clause.
This is known as nested queries or subqueries. Sometimes, a
simple select statement cannot get the query. You have to
use nested queries.

Example 5.1: Find the faculty with the highest salary.

You may attempt to solve the query using the following
statement:

select lastName || ', ' || firstName as "Name", salary
from Faculty
where salary = max(salary);

This is erroneous because the aggregate function max cannot
be used in the where clause. To fix it, use a nested query
as follows:

select lastName || ', ' || firstName as "Name", salary

from Faculty

where salary = (select max(salary) from Faculty);

The result is shown in Figure 5.1.

Figure 5.1

Example 5.1 demonstrates the nested queries.

Example 5.2: Find the department with the largest total
salary. The result is shown in Figure 5.2.

select deptId, sum(salary)
from Faculty

© Copyright Y. Daniel Liang, 2005 2

group by deptId
having sum(salary) =
 (select max(sum(salary)) from Faculty group by deptId);

Figure 5.2

Example 5.2 demonstrates the nested queries with the group
by and having clauses.

5.3 Joining Tables

Often you need to get the information from multiple tables
as demonstrated in the following query.

Example 5.3: List courses taken by student Jacob Smith. To
solve this query, you need to join tables Student and
Enrollment as shown in Figure 5.3.

A tuple

Student Table

ssn lastName mi firstName …

Enrollment Table

ssn courseId …

Equal
Figure 5.3

Student and Enrollment are joined on ssn.

You can write the query in SQL as follows:

select distinct lastName || ', ' || firstName as "Name", courseId
from Student, Enrollment
where Student.ssn = Enrollment.ssn and
 lastName = 'Smith' and firstName = 'Jacob';

© Copyright Y. Daniel Liang, 2005 3

The tables Student and Enrollment are listed in the from
clause. The query examines all pairs of rows, one from
Student and the other from Enrollment and selects the pairs
that satisfy the condition in the where clause. The rows in
Student have last name Smith and first name Jacob and both
rows from Student and Enrollment have the same ssn values.
For each pair selected, lastName and firstName from Student
and courseId from Enrollment are used to produce the result,
as shown in Figure 5.4.

Figure 5.4

Example 5.3 demonstrates queries involving multiple tables.

Student and Enrollment have the same attribute ssn. To
distinguish them in a query, use Student.ssn and
Enrollment.ssn.

When joining two tables without the where clause, the result
is a Cartesian product, i.e. all pairs of two rows from each
table are selected.

NOTE: SQL2 introduced the natural join and join,
operators that can be used in the from clause to
specify a join of two tables. The syntax A
natural join B joins A with B on their common
attributes. The syntax A join B on condition
joins A with B with a specified condition.
Example 5.3 can be rewritten using the natural
join or join operators as follows:

select distinct lastName || ', ' || firstName as "Name", courseId

from Student natural join Enrollment

where lastName = 'Smith' and firstName = 'Jacob';

select distinct lastName || ', ' || firstName as "Name", courseId

© Copyright Y. Daniel Liang, 2005 4

from Student join Enrollment on Student.ssn = Enrollment.ssn and

 lastName = 'Smith' and firstName = 'Jacob';

***End of NOTE

5.4 Tuple Aliases

In the preceding query, you distinguish attributes by
prefixing table names before the attributes using the dot
notation (e.g. Student.ssn). Occasionally, you need to join
rows from the same table, as in the following query.

Example 5.4: Find all pairs of students with the same phone
number. List the students and their common phone number. To
solve this query, you need to join tables Student with
Student as shown in Figure 5.5.

Student Table

A tuple

 lastName mi firstName … phone

Student Table

lastName mi firstName … phone

Equal

Figure 5.5

Student is joined with Student on the attribute phone.

To distinguish the rows from both Student tables, use table
aliases. You can alias the first Student table as s1 and the
second as s2. The query can be written as follows:

select s1.firstName || ' ' || s1.lastName as "Student 1",
 s2.firstName || ' ' || s2.lastName as "Student 2", s1.phone
from Student s1, Student s2
where s1.phone = s2.phone and s1.ssn < s2.ssn;

s1 and s2 are the aliases for Student. The query examines
all pairs of rows, one from s1 and the other from s2 and
selects the pairs whose rows have the same phone number. For
each pair selected, lastName and firstName from s1 and s2
are used to produce the result, as shown in Figure 5.6.

© Copyright Y. Daniel Liang, 2005 5

Figure 5.6

Example 5.4 demonstrates quires involving join of same
tables and using table aliases.

NOTE: The where clause has another condition
s1.ssn < s2.ssn. Without this condition, two
students (e.g. Joy Kennedy and Toni Peterson)
with the same phone number would appear in two
pairs (Joy Kennedy, Toni Peterson, 9129229434)
and (Toni Peterson, Joy Kennedy, 9129229434).

5.5 Conditions Involving Sets

SQL provides the operators in, all, any, exists, and unique
that checks values in a set to produce a Boolean result.

• Expression e in (S) checks whether value e is in set S.

• Expression e op all (S) uses the comparison operator op
(=, <, <=, >, >=, <>) to compare e with every value in
S. The result is true if and only if every comparison
evaluates to true.

• Expression e op any (S) uses the comparison operator op

(=, <, <=, >, >=, <>) to compare e with every value in
S. The result is true if one of the comparisons
evaluates to true.

• Expression exists (S) returns true if and only if S is

not empty.

• Expression unique (S) returns true if and only if S has

© Copyright Y. Daniel Liang, 2005 6

no duplicate tuples. The unique condition is currently
not supported in Oracle. However, you can write queries
without using the unique condition.

NOTE: All the Boolean expressions can be negated
by putting the not keyword in front of the
expression.

NOTE: You can use e op S provided that S has a
single value. If S is a query that results in
more than one value, an error would occur.

Example 5.5: Find all faculty in the Computer Science and
Mathematics departments. The query result is shown in Figure
5.7.

select firstName || ' ' || lastName as "CS/MATH Faculty"
from Faculty
where deptId in (
 select deptId
 from Department
 where name = 'Computer Science' or name = 'Mathematics');

Figure 5.7

Example 5.5 demonstrates the in operator.

Many quires involving the in operator are nested queries.
They can often be rewritten using joins. Example 5.5 can be
rewritten using joins as follows:

select firstName || ' ' || lastName as "CS/MATH Faculty"

from Faculty, Department

where Faculty.deptId = Department.deptId and

 (name = 'Computer Science' or name = 'Mathematics');

There are many ways to write queries. All solutions are
acceptable and there is no difference in the performance.

© Copyright Y. Daniel Liang, 2005 7

SQL is a non-procedural language. Each query is translated
to procedures and optimized by the DBMS. The advantage of
using joins is that you can display attributes from both
tables. For example, you can display department name in the
query as follows:

select firstName || ' ' || lastName as "CS/MATH Faculty",

 Department.name

from Faculty, Department

where Faculty.deptId = Department.deptId and

 (name = 'Computer Science' or name = 'Mathematics');

Example 5.6: Find all faculty whose salary is greater than
the salary of all the faculty in the MATH department. The
query result is shown in Figure 5.8.

select firstName || ' ' || lastName as "Faculty"
from Faculty
where salary > all (
 select salary
 from Faculty
 where deptId = 'MATH');

Figure 5.8

Example 5.6 demonstrates the all operator.

This query is equivalent to the following:

select firstName || ' ' || lastName as "Faculty"

from Faculty

where salary > (select max(salary)

 from Faculty

 where deptId = 'MATH');

Example 5.7: Find all students who take at least one course
taught by Alex Bedat. List the student names and course
titles. The query result is shown in Figure 5.9.

© Copyright Y. Daniel Liang, 2005 8

select firstName || ' ' || lastName as "Student", Course.title
from Student, Enrollment, Course
where Course.courseId = Enrollment.courseId and
 Student.ssn = Enrollment.ssn and Enrollment.courseId = any (
 select courseId
 from TaughtBy, Faculty
 where Faculty.ssn = TaughtBy.ssn and
 firstName = 'Alex' and lastName = 'Bedat')
order by lastName;

Figure 5.9

Example 5.7 demonstrates the any operator.

NOTE: Expression e = any S is equivalent to e in
S. So the previous query can be written as

select firstName || ' ' || lastName as "Student", Course.title
from Student, Enrollment, Course
where Course.courseId = Enrollment.courseId and
 Student.ssn = Enrollment.ssn and Enrollment.courseId in (
 select courseId
 from TaughtBy, Faculty
 where Faculty.ssn = TaughtBy.ssn and
 firstName = 'Alex' and lastName = 'Bedat')
order by lastName;

***End of NOTE

Example 5.8: Find all faculty who currently don’t teach any
courses. The query result is shown in Figure 5.10.

select distinct firstName || ' ' || lastName as "Faculty"
from Faculty f
where not exists (
 select courseId
 from TaughtBy

© Copyright Y. Daniel Liang, 2005 9

 where f.ssn = TaughtBy.ssn);

Figure 5.10

Example 5.8 demonstrates the exist operator.

Example 5.9: Find the department with unique faculty last
names.

select Department.name
from Dapartment d
where unique (
 select lastName
 from Faculty
 where d.deptId = Faculty.deptId);

The unique condition currently not supported in Oracle.
However, you can write this query without using the unique
condition as follows:

select name
from Department d
where (select count(lastName)
 from Faculty
 where d.deptId = Faculty.deptId)
 = (select count(distinct lastName)
 from Faculty
 where d.deptId = Faculty.deptId);

The output the query is shown in Figure 5.11. Note that the
CS department has two faculty Frank Goldman and Kim Goldman
with the same last name. So, the CS department is not
selected in the query.

© Copyright Y. Daniel Liang, 2005 10

Figure 5.11

Example 5.9 demonstrates quires without using the unique
keyword.

5.6 Outer Join (Optional)

A join of two tables returns only those rows that satisfy
the join condition. This is known as inner join or simple
join. Sometimes it is convenient to list all tuples from one
or both tables in the result even though they are not
matched in the inner join. SQL 92 provides the outer join
operation, which can be used for this purpose. An outer join
extends the result of an inner join and returns all rows
that satisfy the join condition and also some or all of
those rows from one or both tables for which no rows satisfy
the join condition.

To write a query that performs an outer join of tables A and
B and returns all rows from A (a left outer join), use the
syntax A left [outer] join B on condition, For all rows in A
that have no matching rows in B, Oracle returns null for any
select list expressions containing columns of B.

To write a query that performs an outer join of tables A and
B and returns all rows from B (a right outer join), use the
syntax A right [outer] join B on condition. For all rows in
A that have no matching rows in B, Oracle returns null for
any select list expressions containing columns of A.

To write a query that performs an outer join and returns all
rows from A and B, extended with nulls if they do not
satisfy the join condition (a full outer join), use the

© Copyright Y. Daniel Liang, 2005 11

syntax A full [outer] join B on condition.

Example 5.10: Display all courses taught by CS faculty. If a
course is not taught by a CS faculty, display it too. The
query result is shown in Figure 5.12.

select Course.courseId, title,

 firstName || ' ' || lastName as "Name", deptId

from (Course left join TaughtBy

 on Course.courseId = TaughtBy.courseId) left join Faculty

 on Faculty.ssn = TaughtBy.ssn and deptId = 'CS';

Figure 5.12

Example 5.10 demonstrates left outer join.

5.7 Set Operators

In Chapter 1, “Introduction to Database Systems,” you
learned about the relational operators union, difference,
and intersection. SQL supports these operators to combine
the results of two queries into a single result.

• Q1 union Q2 returns all distinct rows from both
queries.

© Copyright Y. Daniel Liang, 2005 12

• Q1 union all Q2 returns all rows from both queries
(duplicates are not eliminated).

• Q1 intersect Q2 returns all rows that appear in both
queries.

• Q1 minus Q2 returns all distinct rows selected by the
first query but not the second.

Example 5.11: Display all faculty in the CS department and
all faculty who teach the CS courses. A CS course may be
taught by a faculty in other departments. You can use the
union operator to solve the query. The query result is shown
in Figure 5.13.

select firstName || ' ' || lastName as "Name"

from Faculty

where deptId = 'CS'

union

select firstName || ' ' || lastName as "Name"

from Faculty, TaughtBy, Course, Subject

where Faculty.ssn = TaughtBy.ssn and

 TaughtBy.courseId = Course.courseId and

 Course.subjectId = Subject.subjectId and

 Subject.deptId = 'CS';

Figure 5.13

Example 5.11 demonstrates the union operator.

The query that uses the union operator can always be
replaced by a query that uses the or operator. For example,
the preceding query is equivalent to the following:

© Copyright Y. Daniel Liang, 2005 13

select distinct firstName || ' ' || lastName as "Name"

from Faculty, Subject, Course, TaughtBy

where Faculty.deptId = 'CS' or (Faculty.ssn = TaughtBy.ssn and

 TaughtBy.courseId = Course.courseId and

 Course.subjectId = Subject.subjectId and

 Subject.deptId = 'CS');

Example 5.12: Display all faculty in the CS department who
currently teach a CS course. You can solve the query using
the intersect operator. The result is the intersection of
all CS faculty and all faculty who teach a CS course. The
query result is shown in Figure 5.14.

select firstName || ' ' || lastName as "Name"

from Faculty

where deptId = 'CS'

intersect

select firstName || ' ' || lastName as "Name"

from Faculty, TaughtBy, Course, Subject

where Faculty.ssn = TaughtBy.ssn and

 TaughtBy.courseId = Course.courseId and

 Course.subjectId = Subject.subjectId and

 Subject.deptId = 'CS';

Figure 5.14

Example 5.12 demonstrates the intersect operator.

The query that uses the intersect operator can always be
replaced by a query that uses the and operator. For example,
the preceding query is equivalent to the following:

select distinct firstName || ' ' || lastName as "Name"

© Copyright Y. Daniel Liang, 2005 14

from Faculty, TaughtBy, Course, Subject

where Faculty.deptId = 'CS' and (Faculty.ssn = TaughtBy.ssn and

 TaughtBy.courseId = Course.courseId and

 Course.subjectId = Subject.subjectId and

 Subject.deptId = 'CS');

Example 5.13: Display all faculty not in the CS department
who currently teach a CS course. You can solve the query
using the minus operator. The result is all faculty who
teach a CS course minus all CS faculty. The query result is
shown in Figure 5.15.

select firstName || ' ' || lastName as "Name"

from Faculty, TaughtBy, Course, Subject

where Faculty.ssn = TaughtBy.ssn and

 TaughtBy.courseId = Course.courseId and

 Course.subjectId = Subject.subjectId and

 Subject.deptId = 'CS'

minus

select firstName || ' ' || lastName as "Name"

from Faculty

where deptId = 'CS';

Figure 5.15

Example 5.13 demonstrates the minus operator.

The query that uses the minus operator can always be
replaced by a query that uses the and not operator. For
example, the preceding query is equivalent to the following:

select firstName || ' ' || lastName as "Name"

from Faculty, TaughtBy, Course, Subject

where Faculty.ssn = TaughtBy.ssn and

© Copyright Y. Daniel Liang, 2005 15

 TaughtBy.courseId = Course.courseId and

 Course.subjectId = Subject.subjectId and

 Subject.deptId = 'CS' and not (Faculty.deptId = 'CS');

5.8 Using Queries in the create table, insert, update, and
delete Statements

The SQL select statement is the most used statement. You can
use a nested select query to create a table, insert rows,
update rows, and delete rows.

The general syntax for creating a table using a select query
is:

create table TableName
 as select-statement;

For example, the following statement creates a table that
contains the CS faculty.

create table TempFaculty
 as select ssn, firstName || ' ' || lastName as "Name",
 phone, rank, email, deptId, salary
 from Faculty where deptId = 'CS';

The general syntax for inserting into a table using a select
query is:

insert into table TableName [column-list]
 select-statement;

To insert rows into a table, the table must already exist.
For example, the following statement inserts Math faculty
into TempFaculty.

insert into TempFaculty
 select ssn, firstName || ' ' || lastName,
 phone, rank, email, deptId, salary
 from Faculty where deptId = 'MATH';

The general syntax for updating rows in a table using a
select query is:

update TableName
set columnName-list = (select-statement)
where condition;

For example, the following statement changes the salary of
all full professors to the maximum faculty salary:

update TempFaculty
set salary = (select max(salary) from TempFaculty)
where rank = 'Full Professor';

The following statement changes the salary of the faculty
with the lowest to the highest:

update TempFaculty
set salary = (select max(salary) from TempFaculty)
where salary = (select min(salary) from TempFaculty);

© Copyright Y. Daniel Liang, 2005 16

The general syntax for deleting rows from a table using a
select query is:

delete [from] TableName

where columnName = select-statement;

For example, the following statement deletes all CS Faculty
from TempFaculty who don’t teach any courses.

delete from TempFaculty

where ssn in (

 select Faculty.ssn

 from Faculty, Enrollment

 where not exists (

 select courseId

 from TaughtBy

 where Faculty.ssn = TaughtBy.ssn));

5.9 Solving Queries Using Multiple Statements

Sometimes, it is difficult to get a solution for a query in
one statement. You may break a program into several
subproblems and store result for subproblems into temporary
tables.

Example 5.14: Find the students who take all the courses
taught by Professor George Franklin. This problem can be
divided into the following subproblems:

1. Find all the courseId for the courses taught by George
Franklin and save the result into a temporary table
Temp1:

create table Temp1
 as select courseId
 from TaughtBy, Faculty
 where TaughtBy.ssn = Faculty.ssn and
 firstName = 'George' and lastName = 'Franklin';

2. Store all the students and the courseId into table
Temp2 for the students who take courses in Temp1.

create table Temp2
 as select Student.ssn, Enrollment.courseId
 from Student, Enrollment, Temp1
 where Student.ssn = Enrollment.ssn and
 Enrollment.courseId = Temp1.courseId;

3. Display the students in Temp2 whose count is the same

as the count in Temp1.

select Student.ssn, firstName, mi, lastName
from Student, Temp2
where Student.ssn = Temp2.ssn
group by Student.ssn, firstName, mi, lastName
having count(*) = (
 select count(*) from Temp1);

© Copyright Y. Daniel Liang, 2005 17

4. Drop all temporary tables.

drop table Temp2;
drop table Temp1;

5.10 Views

The concept of external views was introduced in Chapter 1,
“Introduction to Database Systems.” A view is a virtual
table. It presents only the part of the database that is
interested to the user. In many ways, a view can be used
like a table. This section introduces defining and using
views in SQL.

A view is defined based on one or more tables or other
views. The general syntax for creating a view is:

create [or replace] [force/noforce] view ViewName [column-list]

as select-statement

[with check option [constraint constraintName]]

[with read only];

• The or replace option replaces an existing view with

the same name if it already exists.

• The force option creates the view even if the
underlying table does not exist. In this case, the view
is created, but cannot be used. The view can be used
once the table is created. The default is noforce,
which does not create the view if the underlying table
does not exist.

• The column-list specifies the column names in the view.

The number of columns in the list must match the number
of columns selected from the select-statement.

• With the with check option clause specified, DBMS

checks whether the condition specified in the where
clause of the select-statement is violated for every
insert or update statement on the view. If violated,
the insertion or update operation is rejected. You may
specify a constraint name for the check option.

• With the with read only clause specified, the view is

not updatable.

The following statement creates a read-only view that lists
the faculty and the courses taught by the faculty.

create or replace view FacultyCourse (name, course)

© Copyright Y. Daniel Liang, 2005 18

as select firstName || ' ' || lastName, title

 from Faculty, TaughtBy, Course

 where Faculty.ssn = TaughtBy.ssn and

 TaughtBy.courseId = Course.courseId

with read only;

The following statement creates a view that lists the CS
faculty.

create or replace view CSFaculty

 (ssn, firstName, lastName, deptId)

as select ssn, firstName, lastName, deptId

 from Faculty

 where deptId = 'CS'

with check option;

The view has the with check option specified. If you attempt
to insert a row using the following statement, DBMS rejects
it because DBMS checks the condition and catches the
violation (deptId is 'MATH'). Without the with check option
specified, the row would be inserted.

insert into CSFaculty values ('111224444', 'Tim', 'Jones', 'MATH');

There are many restrictions on updating views:

• A view cannot be updated if it contains derived
columns. The following view has a column that is a
combination of firstName and lastName. This view cannot
be updated.

create or replace view CSFaculty

 (ssn, name, deptId)

as select ssn, firstName || ' ' || lastName, deptId

 from Faculty

 where deptId = 'CS'

• No insertion if its base table contains a column with
the not null constraint, which is not selected in the
view.

• No insertion if the select-statement in the view
definition has an order by clause.

• No insertion if a view is defined on multiple tables.
• Update and delete operations can be performed on a view

that is defined on multiple tables, provided that the
table has a primary key and other restrictions are not
violated.

NOTE: To drop a view, use the command drop view
ViewName. You can also alter a view using the
alter view command. Often it is more convenient
to use create or replace to alter a view rather
than altering it.

© Copyright Y. Daniel Liang, 2005 19

5.10.1 Solving Queries Using Views

Section 5.9, “Solving Queries Using Multiple Statements,”
uses temporary tables to help solve complex queries. You can
also use views instead of temporary tables. You can rewrite
Example 5.14 using views as follows:

1. Create a view Temp1 for the courses taught by George
Franklin:

create view Temp1
 as select courseId
 from TaughtBy, Faculty
 where TaughtBy.ssn = Faculty.ssn and
 firstName = 'George' and lastName = 'Franklin';

2. Create a view Temp2 for the students who take courses
in Temp1.

create view Temp2
 as select Student.ssn, Enrollment.courseId
 from Student, Enrollment, Temp1
 where Student.ssn = Enrollment.ssn and
 Enrollment.courseId = Temp1.courseId;

3. Display the students in Temp2 whose count is the same

as the count in Temp1.

select Student.ssn, firstName, mi, lastName
from Student, Temp2
where Student.ssn = Temp2.ssn
group by Student.ssn, firstName, mi, lastName
having count(*) = (
 select count(*) from Temp1);

4. Drop all temporary views.

drop view Temp2;
drop view Temp1;

A view is a virtual table. Its contents are dynamically
generated upon execution. The contents of the view may be
different in a transaction due to the change of the base
table. Therefore, you should be careful to watch for the
changes in the view after the base tables are changed.

Example 5.15: Exercise 4.3 defined two tables Card and
Customer. Delete the customer who has the most cards and
also delete the cards owned by that customer.

You may attempt to solve the problem as follows:

1. Create a view Temp1 that contains the ssn of the
customer and the number of the cards owned by the
customer.

© Copyright Y. Daniel Liang, 2005 20

create view Temp1 (ssn, numberOfCards)
 as select ssn, count(cardNo)
 from Customer
 group by ssn;

2. Create a view Temp2 that contains the cardNo owned by
the customer who has the most cards.

create view Temp2 (cardNo)
 as select cardNo
 from Customer, Temp1
 where Customer.ssn = Temp1.ssn and
 Temp1.numberOfCards =
 (select max(numberOfCards) from Temp1);

3. Delete the cards from the Customer table.

delete Customer
where cardNo in (select cardNo from Temp2);

4. Delete the cards from the Card table.
delete Card
where cardNo in (select cardNo from Temp2);

5. Drop the views.
drop view Temp2;
drop view Temp1;

The solution is wrong, because when the cards are deleted
from Customer, the contents for Temp2 are changed.
Therefore, after Step 3, Temp2 no longer contains the cardNo
owned by the customer who has the most cards. To fix the
problem, you can simply create temporary tables instead of
views.

5.11 Oracle rowId and rowNum columns

For each table, Oracle maintains a pseudocolumn rowId. For
each query result, Oracle maintains a pseudocolumn rowNum.
Each row in the database has an address. You can examine a
row’s address by querying the pseudocolumn rowId, but cannot
modify it. Values of this pseudocolumn are hexadecimal
strings representing the address of each row.

The rowId values have several important uses:

• They are the fastest way to access a single row.
• They can show you how a table’s rows are stored.
• They are unique identifiers for rows in a table.

For each row returned by a query, the rowNum pseudocolumn
returns a number indicating the order of the row in the
selected result. The first row selected has a rowNum of 1,
the second has 2, and so on. You can use rowNum to limit the
number of rows returned by a query. This is sometimes
referred to as a "top-N query" as shown in the following
example.

Example 5.16: Select three faculty with highest salary. The

© Copyright Y. Daniel Liang, 2005 21

query result is shown in Figure 5.16.

create table Temp1 (name, salary)

as select firstName || ' ' || lastName "Name", salary

from Faculty

where salary is not null

order by salary desc;

select * from Temp1 where rowNum <= 3;

drop table Temp1;

Figure 5.16

Example 5.16 demonstrates the rowNum column.

5.12 Indexes

Indexes are optional structures associated with tables.
Indexes can be used to improve database performance. You can
create indexes on one or more columns of a table to speed
SQL statement execution on that. An index can be created
using the create index statement. Once an index is created,
the DBMS can utilize the index to search for a row quickly
rather than scanning the entire table.

Indexes are logically and physically independent of the data
in the associated table. You can create or drop an index at
any time without affecting the base tables or other indexes.
Your applications continue to work with or without indexes.
Without indexes, your application may work slower. However,
indexes require additional storage space.

NOTE: By default, Oracle creates an index for
the primary key and the unique constraints.

© Copyright Y. Daniel Liang, 2005 22

Oracle supports several types of indexes. Four frequently
used indexes are:

1. B-Tree indexes. B-Tree is a variation of binary tree
with multiple branches. It is commonly used in the
database systems for creating indexes. By default,
Oracle creates indexes using B-Tree.

2. Bitmap indexes. Bitmap indexes stores rowids associated
with a key value as a bitmap.

3. Unique indexes. Unique indexes require that the
indexes values are unique.

4. Function-based indexes. Function-based indexes create
indexes based on expression or functions.

Here are some examples of creating indexes:

Example 5.17: Create a B-Tree index on the firstName and
lastName columns of the Student table.

create index StudentIndex on Student (firstName, lastName);

To drop the index StudentIndex, use

drop index StudentIndex; (Oracle)

drop index StudentIndex on StudentIndex; (MySQL and Access)

Example 5.18: Create a Bitmap index on the firstName and
lastName columns of the Student table.

create bitmap index StudentIndex on Student (firstName, lastName);

NOTE: Bitmap indexes are only available in
Oracle 9i Enterprise Edition.

Example 5.19: Create a unique index on the firstName and
lastName columns of the Student table.

create unique index StudentIndex on Student (firstName, lastName);

In this case, the combination of firstName and lastName in
the Student table must be unique. Otherwise, an index error
would occur.

Example 5.20: Create a function-based index on the firstName
and lastName columns of the Student table. Use the upper or
lower function on firstName and lastName to enable case-
insensitive search on firstName and lastName.

create index StudentIndex on Student (upper(firstName), upper(lastName));

NOTE: You need the query rewrite privilege to be
able to create function-bases indexes.

© Copyright Y. Daniel Liang, 2005 23

CAUTION: Indexes can be used to speed up
queries. Indexes, however, add space and
processing overhead to the database. Maintaining
indexes may consume a significant CPU and I/O
resources. In general, indexes can be used if
your applications frequently retrieve small
portion of the records in a large table.

TIP: By default, Oracle creates B-Tree indexes.
B-Tree indexes provide excellent performance for
quires, inserts, updates, and deletes, but it
takes a lot of space to store B-Tree. Bitmap
indexes can provide considerable storage savings
over the use of B-Tree indexes. If most of the
operations in your application involve queries,
Bitmap indexes are generally appropriate.

5.12 Clusters

Tables are related through common columns. Often the common
columns are used to join tables. To speed up the join
operations of the tables on the common columns, you can
create clusters to group these tables together. A cluster is
a database object that physically stores the tables together
through their common columns. Because the tables are stored
together in the same data blocks, disk I/O is reduced for
joins of clustered tables.

A cluster uses the cluster key values to group tables
together. A cluster key value is the value of the cluster
key columns for a particular row. Each cluster key value is
stored only once in the cluster and the cluster index. For
example, you may create a cluster to store Student and
Enrollment together on the cluster key ssn. Figure 5.17
illustrates how these two tables are stored without using a
cluster. Figure 5.18 illustrates how these two tables are
stored using a cluster.

© Copyright Y. Daniel Liang, 2005 24

Student Table

ssn firstName mi lastName …

444111110 Jacob R Smith
444111111 John K Stevenson
444111112 George R Heintz

Enrollment Table

ssn courseId dateRegistered …

444111110 11111 1-JAN-02
444111110 11112 1-JAN-02
444111110 11113 1-JAN-02
444111111 11111 2-JAN-02
444111111 11112 2-JAN-02
444111111 11113 2-JAN-02
444111112 11114 2-JAN-02
444111112 11115 2-JAN-02
444111112 11116 2-JAN-02

Unclustered Tables

Figure 5.17

Tables are stored unclustered in the database.

Student Table

ssn firstName mi lastName … courseId dateRegistered

444111110 Jacob R Smith 11111 1-JAN-02
 11112 1-JAN-02
 11113 1-JAN-02

444111111 John K Stevenson 11111 2-JAN-02
 11112 2-JAN-02
 11113 2-JAN-02

444111112 George R Heintz 11114 2-JAN-02
 11115 2-JAN-02
 11116 2-JAN-02

Enrollment Table

Clustered Tables

Clustered Key
ssn

Figure 5.18

Tables are stored clustered in the database.

© Copyright Y. Daniel Liang, 2005 25

You can create a cluster using the create cluster statement.
For example, the following statement creates a cluster on
key ssn.

create cluster StudentEnrollment (ssn char(9));

Before you add tables into the cluster, the cluster key must
be indexed using the create index statement. The following
statement creates an index on the cluster StudentEnrollment.

create index idxStudentEnrollment on cluster StudentEnrollment;

Suppose the Student table and the Enrollment table are
already created, to add them to the StudentEnrollment
cluster, perform the following steps:

1. Create a temporary table for Student and a temp table for
Enrollment.

create table TempStudent

 as select * from Student;

create table TempEnrollment

 as select * from Enrollment;

2. Drop tables Student and Enrollment.

drop table Student;

drop table Enrollment;

3. Create a new Student table and a new Enrollment table and
add them to the cluster.

create table Student

 cluster StudentEnrollment (ssn)

 as select * from TempStudent;

create table Enrollment

 cluster StudentEnrollment (ssn)

 as select * from TempEnrollment;

4. Drop temporary tables TempStudent and TempEnrollment.

drop table TempStudent;

drop table TempEnrollment;

TIP: Cluster tables that are accessed frequently
if your application joins the tables on the
common columns frequently. Don’t cluster the

© Copyright Y. Daniel Liang, 2005 26

tables if the tables are joined occasionally. It
takes more time to insert, update, and delete
records in the clustered tables.

5.13 Database Links and Distributed Queries

Database links are used to build distributed database
systems. A distributed database system allows applications
running on one database server to access data on other
database servers over the network. A database link defines a
schema object in the local database that enables the local
user to access objects on a remote database. Once you have
created a database link, you can use it to refer to tables
and views on the remote database.

The syntax to create a database link is as follows:

create [public] database link dblink

connect to username identified by password using netservicename;

The public keyword specifies to create a public database
link available to all users. If you omit this keyword, the
database link is private and is available only to you. The
dblink specifies the link name. The connect clause specifies
the account with the username identified by the password on
the remote server to be linked. The netservicename specifies
the remote server. For the information on Oracle network
service name, please see www.prenhall.com/liang/db.html.

Here is an example to create a database link named
dblink_liang to scott/tiger on a remote server whose network
service name is liang.

create public database link dblink_liang

connect to scott identified by tiger using 'liang';

You can now access the objects on the remote server through
dblink_liang. The following displays the contents in the
Address table on the remote server.

select * from Address@dblink_liang;

To drop a database link, use

drop [public] database link dblink;

Note: A database link is created from one
database to the other. You cannot have a link on
the same databases.

5.14 Synonyms

© Copyright Y. Daniel Liang, 2005 27

http://www.prenhall.com/liang/db.html

Sometimes you want to give all database users the access to
a table with a simple unified name. You can create a synonym
using the create synonym statement. Synonyms provide both
data independence and location transparency. Synonyms permit
applications to function without modification regardless of
which user owns the table or view and regardless of which
database holds the table or view.

For example, the DBA can create a public synonym for the
Student table owned by scott as follows:

create public synonym Student for scott.Student;

Now all users can access the table using the synonym
Student.

The DBA can also create a public synonym for the Address
table through the database link as follows:

create public synonym Address for scott.Student;

To drop a synonym, use

drop [public] synonym SynonymName;

5.15 Sequences

A sequence is an Oracle object that can be used to generate
sequence of integers. These integers are often used as
values for surrogate integer key attribute such as userId
and deptId, and productId. The syntax for creating a
sequence is

create sequence sequenceName

 [increment by n]

 [start with s]

 [maxvalue max | nomaxvalue]

 [minvalue minr | nominvalue]

 [cycle | nocyle]

• increment by n increments the next generated value by

n. If n is negative, the next generated value
decreases. By default, the increment is 1.

• start with s specifies that the sequence starts with

integer s. By default, the start value is 1.

• maxvalue max specifies that the maximum value
generated. nomaxvalue indicates that the sequence
continues to generate until it reaches 1027. If the

© Copyright Y. Daniel Liang, 2005 28

increment is negative, the nomaxvalue is –1. nomaxvalue
is the default.

• minvalue min specifies that the minimum value

generated. If nominvalue is specified, the minimum
value is 1 for ascending sequence, and –1026 for
descending sequence.

• cycle indicates that the sequence continues to generate

from the start after reaching the maximum or minimum
value. nocycle indicates that no more generation after
reaching the maximum or minimum value. The default is
nocycle.

The following statement creates a sequence starting with
100, with an increment 10, maximum value 9000, and no cycle.

create sequence MySequence

 increment by 10

 start with 100

 maxvalue 9000

 nocycle;

The sequences are accessed by two functions nextval and
curval. nextval returns the next generated value and curval
returns the current generated value. The nextval function
must be used before the first invocation of the curval
function. For example, the following statement inserts a new
course with a generated course ID.

insert into Course values (

 MySequence.nextval, 'CSCI', MySequence.nextval,

 'Advanced DB', 3);

You can use the following statement to view the current
generated value:

select MySequence.currval from Dual;

NOTE: The nextval generates the next value in
the sequence. Once it is generated, it cannot be
rollback even if the statement that invokes the
function is rollbacked.

Chapter Summary

This chapter introduced advanced SQL. You learned to write
queries using nested SQL, using various types of joins, and
using the operators in, all, any, exists, and unique. You
learned to use the select statements with other SQL

© Copyright Y. Daniel Liang, 2005 29

statements such as the create table, insert, update, and
delete statements. You learned to create views, indexes, and
clusters. You also learned to create database links,
synonyms, and sequences.

Review Questions

5.1 Can you join two same tables? What is a table alias?

5.2 What is a natural join, inner join, left outer join,
right outer join, and full outer join?

5.3 Can the equality (=) operator be used to compare an
element with a set?

5.4 Describe the in, all, any, exists, and unique operators.

5.5 Can you create a view using the syntax create or replace
view? Can you create a table using the syntax create or
replace table?

5.6 In the create view statement, what is the force option?
what is the with check option? What is the with read only
option?

5.7 Can a view be updated in the following cases:

• A view contains derived columns.
• A view is defined as read only.

5.8 Can you insert into a view in the following cases:

• Its base table contain a column with the not null
constraint, which is not selected in the view.

• The select-statement in the view definition has an
order by clause.

• A view is defined on multiple tables.

5.9 What are the rowId and rowNum columns? Can you modify
the values on these columns?

5.10 If you use the following query to find the top three
faculty with the highest salary, what is wrong?

select firstName || ' ' || lastName "Name", salary

from Faculty

where salary is not null and rowNum <= 3

order by salary desc;

5.11 What type of indexes can you create in Oracle?

5.12 What is a cluster? How do you create a cluster in

© Copyright Y. Daniel Liang, 2005 30

Oracle?

5.13 What is a synonym? How do you create a synonym in
Oracle?

5.14 What is a database link? How do you create a database
link in Oracle?

5.15 What is a sequence object for? How do you create a
sequence? How do you get the next generated sequence value
and how do you obtain the current sequence value?

Exercises

5.1 Find the department with the most faculty.

5.2 List the total number of faculty in each college in
order.

5.3 Find the college with the most faculty.

5.4 Find the student who takes the most courses.

5.5 List the course taken by student Jacob Smith and the
instructor who teach the course.

5.6 Find the pairs of faculty who share the same office.

5.7 Find all Computer Science students who take Math
courses.

5.8 Find all Computer Science students who only take
Computer Science courses.

5.9 Find all Computer Science students who take at least one
Computer Science course and at least one Math course.

5.10 Find all faculty with the same last name.

5.11 Find all Computer Science students who take at least
two Computer Science courses and at least one Math course.

5.12 List the Computer Science students whose last name
begins with S and who take a course from Professor Alex
Bedat in alphabetical order of their last names.

5.13 List the number of students in each college.

5.14 List the total credit hours in each department.

© Copyright Y. Daniel Liang, 2005 31

5.15 Find all faculty who teach courses in both Computer
Science and Math departments.

5.16 Create a table that consists of students in the
computer science department who receive grade ‘A’ or ‘B’ on
all courses. The table contains the student name, course and
the grade.

5.17 Delete all students who are not taking any courses.

5.18 Increase salary of Math professor by 5%.

5.19 Create a view named CSStudent that consists of all
Computer Science students.

5.20 List three departments with most of students.

5.21 Rewrite Example 5.8 using the in operator.

5.22 Find all faculty who currently teach at least one
course.

5.23 Find all faculty who teach exactly one course.

5.24 Find top two departments with the most faculty.

5.25 Find the department name for the department with the
largest total salary.

***Au NOTE:

??function-based index, bitmap, (hash??) internal use

Clusters (Find the CD-ROM)

Internationalization?

More examples and more exercises

© Copyright Y. Daniel Liang, 2005 32

