
   

 
8 

Supplement: Enumerated Types  

For Introduction to Java Programming 
By Y. Daniel Liang 

 

1 Simple Enumerated Types 
 
An enumerated type defines a list of enumerated values. Each 
value is an identifier. For example, the following statement 
declares a type, named MyFavoriteColor, with values RED, 
BLUE, GREEN, and YELLOW in this order. 
 

enum MyFavoriteColor {RED, BLUE, GREEN, YELLOW}; 
 
A value of an enumerated type is like a constant and so, by 
convention, is spelled with all uppercase letters. So, the 
preceding declaration uses RED, not red. By convention, an 
enumerated type is named like a class with first letter of 
each word capitalized. 
 
Once a type is defined, you can declare a variable of that 
type: 
 

MyFavoriteColor color; 
 
The variable color can hold one of the values defined in the 
enumerated type MyFavoriteColor or null, but nothing else. 
Java enumerated type is type-safe, meaning that an attempt 
to assign a value other than one of the enumerated values or 
null will result in a compilation error.  
 
The enumerated values can be accessed using the syntax 
 

enumeratedTypeName.valueName  
 
For example, the following statement assigns enumerated 
value BLUE to variable color: 
 

color = MyFavoriteColor.BLUE; 
 
Note that you have to use the enumerated type name as a 
qualifier to reference a value such as BLUE.  
 
As with any other type, you can declare and initialize a 
variable in one statement: 
 

MyFavoriteColor color = MyFavoriteColor.BLUE; 
 
An enumerated type is treated as a special class. An 
enumerated type variable is therefore a reference variable. 



   

 
9 

An enumerated type is a subtype of the Object class and the 
Comparable interface. Therefore, an enumerated type inherits 
all the methods in the Object class and the compraeTo method 
in the Comparable interface. Additionally, you can use the 
following methods on an enumerated object: 
 

 public String name(); 
Returns a name of the value for the object. 

 
 public int ordinal(); 

Returns the ordinal value associated with the 
enumerated value. The first value in an enumerated type 
has an ordinal value of 0, the second has an ordinal 
value of 1, the third one 3, and so on.  

 
 
Listing 1 gives a program that demonstrates the use of 
enumerated types. Figure 1 shows a sample run of the 
program. 
 
Listing 1 EnumeratedTypeDemo.java (Declaring enumerated type inside a 

class) 

 
public class EnumeratedTypeDemo { 
  static enum Day {SUNDAY, MONDAY, TUESDAY, WEDNESDAY, 
THURSDAY,  
    FRIDAY, SATURDAY}; 
     
  public static void main(String[] args) { 
    Day day1 = Day.FRIDAY; 
    Day day2 = Day.THURSDAY; 
     
    System.out.println("day1's name is " + day1.name()); 
    System.out.println("day2's name is " + day2.name()); 
    System.out.println("day1's ordinal is " + day1.ordinal()); 
    System.out.println("day2's ordinal is " + day2.ordinal());   
     
    System.out.println("day1.equals(day2) returns " +  
      day1.equals(day2));   
    System.out.println("day1.toString() returns " +  
      day1.toString());  
    System.out.println("day1.compareTo(day2) returns " +  
      day1.compareTo(day2)); 
  } 
} 
 



   

 
10 

 

Figure 1 

An enumerated type is a class type. 

An enumerated type is defined in Lines 2-3. Variables day1 
and day2 are declared as the Day type and assigned 
enumerated values in Lines 6-7. Since day1’s value is 
FRIDAY, its ordinal value is 5 (Line 11). Since day2’s value 
is THURSDAY, its ordinal value is 4 (Line 12).  
 
An enumerated type is a subclass of the Object class and the 
Comparable interface, so you can invoke the methods equals, 
toString, and comareTo from an enumerated object reference 
variable (Lines 14-19). day1.equals(day2) returns true if 
day1 and day2 have the same ordinal value. 
day1.compareTo(day2) returns the difference between day1’s 
ordinal value to day2’s. 
 
Alternatively, you can rewrite the code in Listing 1 into 
Listing 2. 
 

Listing 2 EnumeratedTypeDemo1.java (Declaring enumerated type 

standalone) 

public class EnumeratedTypeDemo1 { 
  public static void main(String[] args) { 
    Day day1 = Day.FRIDAY; 
    Day day2 = Day.THURSDAY; 
     
    System.out.println("day1's name is " + day1.name()); 
    System.out.println("day2's name is " + day2.name()); 
    System.out.println("day1's ordinal is " + day1.ordinal()); 
    System.out.println("day2's ordinal is " + day2.ordinal());   
     
    System.out.println("day1.equals(day2) returns " +  
      day1.equals(day2));   
    System.out.println("day1.toString() returns " +  
      day1.toString());  
    System.out.println("day1.compareTo(day2) returns " +  



   

 
11 

      day1.compareTo(day2)); 
  } 
} 
 
enum Day {SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,  
  FRIDAY, SATURDAY} 
     

An enumerated type can be defined inside a class, as shown 
in Lines 2-3 in Listing 1, or standalone as shown in Lines 
20-21 Listing 2. In the former case, the type is treated as 
an inner class. After the program is compiled, a class named 
EnumeratedTypeDemo$Day.class is created. In the latter case, 
the type is treated as a standalone class. After the program 
is compiled, a class named Day.class is created. 
 

NOTE 

Since an enumerated type is like a class, the 
type should be named in the same way as a class 
with the first letter capitalized. Since the 
enumerated values are constants, they should be 
named as regular constants.  

NOTE 

When an enumerated type is declared inside a 
class, the type must be declared as a member of 
the class and cannot be declared inside a 
method. Furthermore, the type is always static. 
For this reason, the static keyword in Line 2 in 
Listing 1 may be omitted. The visibility 
modifiers on inner class can be also be applied 
to enumerated types defined inside a class. 

TIP 

Using enumerated values (e.g., Day.MONDAY, 
Day.TUESDAY, and so on) rather than literal 
integer values (e.g., 0, 1, and so on) can make 
program easier to read and maintain. 

 
2 Using if or switch Statements with an Enumerated Variable 
 
An enumerated variable holds a value. Often your program 
needs to perform a specific action depending on the value. 
For example, if the value is Day.MONDAY, play soccer; if the 
value is Day.TUESDAY, take piano lesson, and so on. You can 
use an if statement or a switch statement to test the value 
in the variable, as shown in (a) and (b) 
 



   

 
12 

 if (day.equals(Day.MONDAY)) { 
  // process Monday 
} 
else if (day.equals(Day.TUESDAY)) {
  // process Tuesday 
} 
else  
  ... 
  

(a)  

Equivalent

switch (day) { 
  case MONDAY:  
    // process Monday 
    break; 
  case TUESDAY:  
    // process Tuesday 
    break; 
  ... 
} 

(b)  

 
In the switch statement in (b), the case label is an 
unqualified enumerated value (e.g., MONDAY, but not 
Day.MONDAY). 
 
 
3 Processing Enumerated Values Using Enhanced for Loop 
 
Each enumerated type has a static method values() that 
returns all enumerated values for the type in an array. For 
example, 
 

Day[] days = Day.values(); 
 
You can use a regular for loop in (a) or an enhanced for 
loop in (b) to process all the values in the array. 
 
 for (int i = 0; i < days.length; i++)
  System.out.println(days[i]); 

(a)  

Equivalent
for (Day day: days) 
  System.out.println(day); 

(b) 
 

 
4 Enumerated Types with Attributes and Methods 
 
The simple enumerated types introduced in the preceding 
section define a type with a list of enumerated values. You 
can also define an enumerate type with attributes and 
methods, as shown in Listing 3. 
 

Listing 3 TrafficLight.java (Enumerated type with attributes and 

methods) 

public enum TrafficLight { 
  red ("Please stop"), GREEN ("Please go"), YELLOW ("Please 
caution"); 
   
  private String description; 
   
  private TrafficLight(String description) { 
    this.description = description; 
  } 



   

 
13 

   
  public String getDescription() { 
    return description; 
  } 
} 

 
The enumerated values are defined in Line 2. The value 
declaration must be the first statement in the type 
declaration. A data field named description is declared in 
Line 4 to describe an enumerated value. The constructor 
TrafficLight is declared in Lines 6-8. The constructor is 
invoked whenever an enumerated value is accessed. The 
enumerated value’s argument is passed to the constructor, 
which is then assigned to description.  
 
Listing 4 gives a test program to use TrafficLight.  
 

Listing 4 TestTrafficLight.java 

public class TestTrafficLight { 
  public static void main(String[] args) { 
    TrafficLight light = TrafficLight.red; 
    System.out.println(light.getDescription()); 
  } 
} 

 
An enumerated value TrafficLight.red is assigned to variable 
light (Line 3) Accessing TrafficLight.red causes the JVM to 
invoke the constructor with argument “please stop”. The 
methods in enumerated type are invoked in the same was as 
the methods in a class. light.getDescription() returns the 
description for the enumerated value (Line 4). 
 

NOTE 

The Java syntax requires that the constructor 
for enumerated types be private to prevent it 
from being invoked directly. The private 
modifier may be omitted. In this case, it is 
considered private by default. 

  


