
Supplement: Text IO Using Reader and Writer

For Introduction to Java Programming
By Y. Daniel Liang

0 Introduction

The text introduced text I/O using the Scanner class and
PrintWriter class, which greatly simplified Text I/O. Prior
to JDK 1.5, you have to use several classes to perform text
I/O. If you are interested to know how to perform Text I/O
in the old way, this supplement is for you.

1 The Reader and Writer Classes

Figure 1 lists the classes for performing text I/O.

Reader

Writer

Object

 PrintWriter

BufferedWriter

FileReader

FileWriter

 InputStreamReader

BufferedReader

 OutputStreamWriter

Figure 1
Reader, Writer, and their subclasses are for text I/O.

Reader is the root for text input classes, and Writer is
the root for text output classes. Figures 16.6 and 16.7
list all the methods in Reader and Writer.

java.io.Reader

+read(): int

+read(cbuf: char[]): int

+read(cbuf: char[], off: int, len:
int): int

+close(): void

+skip(n: long): long

+markSupported(): boolean

+mark(readAheadLimit: int): void

+ready(): boolean

+reset(): void

Reads the next character from the input stream. The value returned is
an int in the range from 0 to 65535, which represents a Unicode
character. Returns -1 at the end of the stream.

Reads characters from the input stream into an array. Returns the actual
number of characters read. Returns -1 at the end of the stream.

Reads characters from the input stream and stores them in cbuf[off],
cbuf[off+1], …, cbuf[off+len-1]. The actual number of bytes read is
returned. Returns -1 at the end of the stream.

Closes this input stream and releases any system resources associated
with it.

Skips over and discards n characters of data from this input stream. The
actual number of characters skipped is returned.

Tests whether this input stream supports the mark and reset methods.

Marks the current position in this input stream.

Returns true if this input stream is ready to be read.

Repositions this stream to the position at the time the mark method was
last called on this input stream.

Figure 2

The abstract Reader class defines the methods for reading a
stream of characters.

NOTE
The read() method reads a character. If no data
are available, it blocks the thread from
executing the next statement. The thread that
invokes the read() method is suspended until
the data become available.

java.io.Writer

+write(int c): void

+write(cbuf: byte[]): void

+write(cbuf: char[], off:
int, len: int): void

+write(str: String): void

+write(str: String, off: int,
len: int): void

+close(): void

+flush(): void

Writes the specified character to this output stream. The parameter
c is the Unicode for a character.

Writes all the characters in array cbuf to the output stream.

Writes cbuf[off], cbuf[off+1], …, cbuf[off+len-1] into the output
stream.

Writes the characters from the string into the output stream.

Writes a portion of the string characters into the output stream.

Closes this input stream and releases any system resources
associated with it.

Flushes this output stream and forces any buffered output
characters to be written out.

Figure 3
The abstract Writer class defines the methods for writing a
stream of characters.

NOTE
All the methods in the text I/O classes except
PrintWriter are declared to throw
java.io.IOException.

2 FileReader/FileWriter

FileReader/FileWriter are convenience classes for
reading/writing characters from/to files using the default
character encoding on the host computer.
FileReader/FileWriter associates an input/output stream
with an external file.

All the methods in FileReader/FileWriter are inherited from
their superclasses. To construct a FileReader, use the
following constructors:

public FileReader(String filename)
public FileReader(File file)

A java.io.FileNotFoundException would occur if you attempt
to create a FileReader with a nonexistent file. For

example, Listing 1 reads and displays all the characters
from the file temp.txt.

Listing 1 TestFileReader.java (Input Using FileReader)

import java.io.*;

public class TestFileReader {
 public static void main(String[] args) {
 FileReader input = null;
 try {
 // Create an input stream
 input = new FileReader("temp.txt");

 int code;
 // Repeatedly read a character and display it on the console
 while ((code = input.read()) != -1)
 System.out.print((char)code);
 }
 catch (FileNotFoundException ex) {
 System.out.println("File temp.txt does not exist");
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
 finally {
 try {
 input.close(); // Close the stream
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
 }
 }
}

The constructors and methods in FileReader may throw
IOException, so they are invoked from a try-catch block.
Since java.io.FileNotFoundException is a subclass of
IOException, the catch clause for FileNotFoundException
(Line 15) is put before the catch clause for IOException
(Line 18). Closing files in the finally class ensures that
the file are always closed in any case (Line 23).

Recall that Java allows the assignment operator in an
expression (see page 37). The expression ((code =
input.read()) != -1) (Line 12) reads a byte from

input.read(), assigns it to code, and checks whether it is
–1. The input value of –1 signifies the end of a file.

NOTE
Attempting to read data after the end of a file
is reached would cause java.io.EOFException.

To construct a FileWriter, use the following constructors:

public FileWriter(String filename)
public FileWriter(File file)
public FileWriter(String filename, boolean append)
public FileWriter(File file, boolean append)

If the file does not exist, a new file will be created. If
the file already exists, the first two constructors will
delete the current contents of the file. To retain the
current content and append new data into the file, use the
last two constructors by passing true to the append
parameter. For example, suppose the file temp.txt exists,
Listing 2 appends a new string, "Introduction to Java," to
the file.

Listing 2 TestFileWriterer.java (Output Using FileWriter)

import java.io.*;

public class TestFileWriter {
 public static void main(String[] args) throws IOException {
 // Create an output stream to the file
 FileWriter output = new FileWriter("temp.txt", true);

 // Output a string to the file
 output.write("Introduction to Java");

 // Close the stream
 output.close();
 }
}

If you replace Line 6 with the following statement,

FileWriter output = new FileWriter("temp.txt");

the current contents of the file are lost. To avoid this,
use the File class’s exists() method to check whether a
file exists before creating it, as follows:

File file = new File("temp.txt");
if (!file.exists()) {
 FileWriter output = new FileWriter(file);
}

3 InputStreamReader/OutputStreamWriter (Optional)

InputStreamReader/OutputStreamWriter are used to convert
between bytes and characters. Characters written to an
OutputStreamWriter are encoded into bytes using a specified
encoding scheme. Bytes read from an InputStreamReader are
decoded into characters using a specified encoding scheme.
You can specify an encoding scheme using a constructor of
InputStreamReader/OutputStreamWriter. If no encoding scheme
is specified, the system’s default encoding scheme is used.
All the methods in InputStreamReader/OutputStreamWriter are
inherited from Reader/Writer except getEncoding(), which
returns the name of the encoding being used by this stream.
Since FileReader is a subclass of InputStreamReader, you
can also invoke getEncoding() from a FileReader object. For
example, the following code

public static void main(String[] args) throws IOException {
 FileReader input = new FileReader("temp.txt");
 System.out.println("Default encoding is " +
input.getEncoding());
}

displays the default encoding for the host machine. For a
list of encoding schemes supported in Java, please see
http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc
.html and http://mindprod.com/jgloss/encoding.html.

NOTE: Java programs use Unicode. When you read
a character from a FileReader stream, the
Unicode code of the character is returned. The
encoding of the character in the file may be
different from the Unicode encoding. Java
automatically converts it to the Unicode. When
you write a character to a FileWriter stream,
Java automatically converts the Unicode of the

character to the encoding specified for the
file. This is pictured in Figure 4.

Program

The Unicode of
the character is
returned

A character is converted
into Unicode

The Unicode of
the character is
sent out

A character stored in
a specified encoding

A character is converted into the
code for the specified encoding

Figure 4
The encoding of the file may be different from the encoding
used in the program.

4 BufferedReader/BufferedWriter

BufferedReader/BufferedWriter can be used to speed up input
and output by reducing the number of reads and writes.
Buffered streams employ a buffered array of characters that
acts as a cache. In the case of input, the array reads a
chunk of characters into the buffer before the individual
characters are read. In the case of output, the array
accumulates a block of characters before writing the entire
block to the output stream.

The use of buffered streams enables you to read and write a
chunk of characters at once instead of reading or writing
the bytes one at a time. You can wrap a
BufferedReader/BufferedWriter around any Reader/Writer
streams. The following constructors are used to create a
BufferedReader/BufferedWriter:

// Create a BufferedReader
public BufferedReader(Reader in)
public BufferedReader(Reader in, int bufferSize)

// Create a BufferedWriter
public BufferedWriter(Writer out)
public BufferedWriter(Writer out, int bufferSize)

If no buffer size is specified, the default size is 8192
characters. A buffered input stream reads as many data as

possible into its buffer in a single read call. By
contrast, a buffered output stream calls the write method
only when its buffer fills up or when the flush() method is
called.

The buffered stream classes inherit methods from their
superclasses. In addition to using the methods from their
superclasses, BufferedReader has a readLine() method to
read a line, and BufferedWriter has a newLine() method to
write a line separator. If the end of stream is reached,
readLine() returns null.

NOTE
The readLine() method return a line without the
line separator. The newLine() method writes a
system-dependent line separator to a file. The
line separator string is defined by the system
and is not necessarily a single ('\n')
character. To get the system line separator,
use

static String lineSeparator = (String)java.security.
 AccessController.doPrivileged(
 new sun.security.action.GetPropertyAction("line.separator"));

Listing 3 uses BufferedReader to read text from the file
“Welcome.java”, displays the text on the console, and
copies the text to a file named “Welcome.java~”.

Listing 3 TestBufferedReaderWriter.java (Using Buffers)

import java.io.*;

public class TestBufferedReaderWriter {
 public static void main(String[] args) throws IOException {
 // Create an input stream
 BufferedReader input =
 new BufferedReader(new FileReader("Welcome.java"));

 // Create an output stream
 BufferedWriter output =
 new BufferedWriter(new FileWriter("Welcome.java~"));

 // Repeatedly read a line and display it on the console
 String line;
 while ((line = input.readLine()) != null) {

 System.out.println(line);
 output.write(line);
 output.newLine(); // Write a line separator
 }

 // Close the stream
 input.close();
 output.close();
 }
}

A BufferedReader is created on top of a FileReader (Lines
6-7), and a BufferedWriter on top of a FileWriter (Lines
10-11). Data from the file are read repeatedly, one line at
a time (Line 15). Each line is displayed in Line 16, and
output to a new file (Line 17) with a line separator (Line
18).

You are encouraged to rewrite the program without using
buffers and then compare the performance of the two
programs. This will show you the improvement in performance
obtained by using buffers when reading from a large file.

TIP
Since physical input and output involving I/O devices
are typically very slow compared with CPU processing
speeds, you should use buffered input/output streams
to improve performance.

5 PrintWriter and PrintStream

BufferedWriter is used to output characters and strings.
PrintWriter and PrintStream can be used to output objects,
strings, and numeric values as text. PrintWriter was
introduced in JDK 1.2 to replace PrintStream. Both classes
are almost identical in the sense that they provide the
same function and the same methods for outputting strings
and numeric values as text. PrintWriter is more efficient
than PrintStream and therefore is the class you ought to
use.

PrintWriter and PrintStream contain the following
overloaded print and println methods:

 public void print(Object o)

public void print(String s)

public void print(char c)

public void print(char[] cArray)

public void print(int i)

public void print(long l)

public void print(float f)

public void print(double d)

public void print(boolean b)

public void println(Object o)

public void println(String s)

public void println(char c)

public void println(char[] cArray)

public void println(int i)

public void println(long l)

public void println(float f)

public void println(double d)

public void println(boolean b)

A numeric value, character, or boolean value is converted
into a string and printed to the output stream. To print an
object is to print the object’s string representation
returned from the toString() method. PrintWriter and
PrintStream also contain the printf method for printing
formatted output, which was introduced in Section 2.17,
“Formatting Output.”

You have already used these methods in System.out. out is
declared as a static variable of the PrintStream type in
the System class. By default, out refers to the standard
output device, that is, the screen console. You can use the
System.setOut(PrintStream) to set a new out. Since System
was introduced before PrintWriter, out is declared
PrintStream and not PrintWriter.

This section introduces PrintWriter, but PrintStream can be
used in the same way. To construct a PrintWriter, use the
following constructors:

public PrintWriter(Writer out)
public PrintWriter(Writer out, boolean autoFlush)

If autoFlush is true, the println methods will cause the
buffer to be flushed.

NOTE
The constructors and methods in PrintWriter and
PrintStream do not throw an IOException. So you
don’t need to invoke them from a try-catch
block.

Listing 4 is an example of generating ten integers and
storing them in a text file using PrintWriter. The example
later writes the data back from the file and computes the
total.

Listing 4 TestPrintWriter.java (Output Data and Strings)

import java.io.*;
import java.util.*;

public class TestPrintWriter {
 public static void main(String[] args) throws IOException {
 // Check if file temp.txt already exists
 File file = new File("temp.txt");
 if (file.exists()) {
 System.out.println("File temp.txt already exists");
 System.exit(0);
 }

 // Create an output stream
 PrintWriter output = new PrintWriter(new FileWriter(file));

 // Generate ten integers and write them to a file
 for (int i = 0; i < 10; i++) {
 output.print((int)(Math.random() * 100) + " ");
 }

 // Close the output stream
 output.close();

 // Open an input stream
 BufferedReader input =
 new BufferedReader(new FileReader("temp.txt"));

 int total = 0; // Store total
 String line;
 while ((line = input.readLine()) != null) {
 // Extract numbers using string tokenizer
 StringTokenizer tokens = new StringTokenizer(line);
 while (tokens.hasMoreTokens())
 total += Integer.parseInt(tokens.nextToken());
 }

 System.out.println("Total is " + total);

 // Close input stream
 input.close();
 }
}

Lines 7-11 check whether the file exists. If so, exit the
program. Line 14 creates a PrintWriter stream for the file.
Lines 17-19 generate ten random integers and output the
integers separated by a space.

Line 25 opens the file for input. Lines 30-35 read all the
lines from the file and use StringTokenizer to extract
tokens from the line. Each token is converted to a number
and added to the total (Line 34).

6 Case Study: Text Viewer
This case study writes a program that views a text file in
a text area. The user enters a filename in a text field and
clicks the View button; the file is then displayed in a
text area, as shown in Figure 5.

Figure 5
The program displays the specified file in the text
area.

Clearly, you need to use text input to read a text file.
Normally, you should use BufferedReader wrapped on a
FileReader to improve performance. When the View button is
pressed, the program gets the input filename from the text
field; it then creates a text input stream. The data are
read one line at a time and appended to the text area for
display. Listing 5 displays the source code for the
program.

Listing 5 FileViewer.java (View Text Files)

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import javax.swing.*;

public class FileViewer extends JFrame implements
ActionListener {
 // Button to view a file
 private JButton jbtView = new JButton("View");

 // Text field to the receive file name
 private JTextField jtfFilename = new JTextField(12);

 // Text area to display the file
 private JTextArea jtaFile = new JTextArea();

 public FileViewer() {
 // Panel p to hold a label, a text field, and a button
 Panel p = new Panel();
 p.setLayout(new BorderLayout());
 p.add(new Label("Filename"), BorderLayout.WEST);
 p.add(jtfFilename, BorderLayout.CENTER);
 p.add(jbtView, BorderLayout.EAST);

 // Add jtaFile to a scroll pane
 JScrollPane jsp = new JScrollPane(jtaFile);

 // Add jsp and p to the frame
 getContentPane().add(jsp, BorderLayout.CENTER);
 getContentPane().add(p, BorderLayout.SOUTH);

 // Register listener
 jbtView.addActionListener(this);
 }

 /** Handle the View button */
 public void actionPerformed(ActionEvent e) {
 if (e.getSource() == jbtView)
 showFile();
 }

 /** Display the file in the text area */
 private void showFile() {
 // Use a BufferedReader to read text from the file
 BufferedReader input = null;

 // Get file name from the text field
 String filename = jtfFilename.getText().trim();

 String inLine;

 try {
 // Create a buffered stream
 input = new BufferedReader(new FileReader(filename));

 // Read a line and append the line to the text area
 while ((inLine = input.readLine()) != null) {
 jtaFile.append(inLine + '\n');
 }
 }
 catch (FileNotFoundException ex) {
 System.out.println("File not found: " + filename);
 }
 catch (IOException ex) {

 System.out.println(ex.getMessage());
 }
 finally {
 try {
 if (input != null) input.close();
 }
 catch (IOException ex) {
 System.out.println(ex.getMessage());
 }
 }
 }

 public static void main(String[] args) {
 FileViewer frame = new FileViewer();
 frame.setTitle("FileViewer");
 frame.setSize(400, 300);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

A BufferedReader is created on top of a FileReader (Line
53). Data from the file are read repeatedly, one line at a
time, and appended to the text area (Line 57). If the file
does not exist, the catch clause in Lines 60-62 catches and
processes it. All other I/O errors are caught and processed
in Lines 63-65. Whether the program runs with or without
errors, the input stream is closed in Lines 66-73.

