
476

Supplement: Design Patterns

For Introduction to Java Programming
By Y. Daniel Liang

1 Introduction

The most important benefit of object-oriented
programming is to enable code reuse. For example, to create
a button, you simply use the JButton class to create an
instance of button. The JButton class is already defined in
the Java API so you can use it without having to reinvent
the wheel. Design patterns are neither classes nor objects.
Rather, they are proven software strategies for designing
classes. Applying design patterns is like reusing
experience. You can apply successful patterns to develop new
software without reinventing new solution strategies.

To apply design patterns effectively, you need to
familiarize yourself with the most popular and effective
patterns. This supplement introduces several popular design
patterns.

2 History and Classifications of Design Patterns

Design patterns can be traced back to an article on the
model-view-controller (MVC) architecture for building GUI in
Smalltalk by Glenn Krasner and Stephen Pope in 1988. The MVC
architecture separates data from presentation of data. The
formal recognition of design patterns was presented in a
groundbreaking book, Design Patterns: Elements of Resuable
Object-Oriented Software, by Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides. The book has a profound
impact on object-oriented software development. The authors
are admirably nicknamed the “Gang of Four” and their book is
commonly known as the gang-of-four book.

The gang-of-four book argued that the expert designers
do not solve every problem from scratches. Rather, they
reuse solutions that have worked for them in the past. When
they found a good solution, they use it over and over again.
Design patterns can speed up the development process by
providing almost ready-made solutions that have been used
earlier and proved to be efficient.

The gang-of-four book recorded experiences in designing
object-oriented software as design patterns, documented 23
most popular design patterns, and classified them into three
categories:

 Creational patterns deal with object creation

mechanisms. For example, you can use the Singleton

477

pattern to ensure that only one object can be created
from a class.

 Structural design patterns identify relationships
among classes.

 Behavioral design patterns explore common
communication patterns among objects.

Table 1 lists the patterns that are discussed in this
supplement.

NOTE
The book will use the official name and
definition for the patterns introduced in the
Gang-of-Four book. It is important to stick with
the same name and definition so the programmer
can communicate using the same vocabularies.

3 The Singleton Pattern
The Singleton pattern declares a class that can be used to
instantiate a unique instance. Occasionally, it is desirable
to restrict instantiation of a class to exactly one object.
For example, there may be many printers in a system, but
there should be only one printer spooler. So, your system
should ensure that only one printer spooler object is
created.

The singleton pattern can be implemented by creating a class
with a private constructor and a static constant that
references an instance of the class. Listing 1 shows an
example of such class.

Listing 1 Singleton.java (Singleton Class Example)

public final class Singleton {
 private static final Singleton uniqueInstance = new
Singleton();

 private Singleton() {
 }

 public static Singleton getInstance() {
 return uniqueInstance;
 }
}

An object of the Singleton class is created in Line 2. Since
the constructor is private (Line 4), it prevents the client
from creating objects using new Singleton(). The only way to
access the object is through the getInstance() method (Line

478

7), which returns the reference of the object (Line 8). For
example, the following code displays true, since object1 and
object2 refers to the same object.

Singleton object1 = Singleton.getInstance();
Singleton object2 = Singleton.getInstance();
System.out.println(object1 == object2);

Will the Singleton class work in the presence of multiple
threads? The answer is yes. Since the constant
uniqueInstance is declared static (Line 2), the instance of
Singleton is created when the class is loaded. So the unique
object is created before any thread can access it. So, it is
guaranteed that there is only one object created in the
presence of multiple threads.

4 The Iterator Pattern
The Iterator pattern provides a unified way for traversing
and processing the elements in an aggregate object such as
an array, set, list, and map without exposing its underlying
representation. An iterator is a separate object that
contains the methods for retrieving and processing the
elements in the aggregate object. Iterators are commonly
defined using an interface. For example, the Iterator
interface is defined in the Collections framework, as shown
in Figure 21.3. You can use it to access any instance of
Collection. Listing 2 shows an example of using iterators to
access a set and a list.

Listing 2 TestIterator.java (Iterator in the Java API)
import java.util.*;

public class TestIterator {
 public static void main(String[] args) {
 Set<String> c1 = new HashSet<String>
 (Arrays.asList(new String[]{"London", "New York", "Chicago"}));
 Iterator iterator1 = c1.iterator();
 while (iterator1.hasNext())
 System.out.print(iterator1.next() + " ");

 System.out.println();
 List<String> c2 = new LinkedList<String>
 (Arrays.asList(new String[]{"London", "New York", "Chicago"}));
 Iterator iterator2 = c2.iterator();
 while (iterator2.hasNext())
 System.out.print(iterator2.next() + " ");
 }
}

A set of strings is created in Lines 5-6. Line 7 obtains an
iterator for the set. Lines 8-9 is a loop that traverses the

479

set using the iterator. A list of strings is created in
Lines 12-13. Line 14 obtains an iterator for the list. Lines
15-16 is a loop that traverses the set using the iterator.
As you see, the iterator allows you traverse the set and
list without knowing how data are stored in the set and
list.

The preceding example demonstrates how to use the iterators
in the Java API. Invoking the iterator() method (Lines 7,
14) returns an Iterator. You may wonder how an iterator is
created. To answer this question, let us create a simple
class for a list of holidays (Listing 3) and an iterator
class for traversing holidays (Listing 4).

Listing 3 Holidays.java (A Collection of Dates)

import java.util.*;

public class Holidays {
 private ArrayList<Date> dates = new ArrayList<Date>();

 public void add(Date date) {
 dates.add(date);
 }

 public HolidaysIterator iterator() {
 return new HolidaysIterator(dates);
 }
}

A Holidays object stores dates in an array list (Line 4).
You can add a new date using the add method and create an
iterator using the iterator() method for traversing and
removing dates in a Holidays object.

Listing 4 HolidaysIterator.java (An Iterator for Holidays)

import java.util.*;

public class HolidaysIterator implements Iterator<Date> {
 private ArrayList<Date> dates = new ArrayList<Date>();
 private int position = 0;

 public HolidaysIterator(ArrayList<Date> dates) {
 this.dates = dates;
 }

 public boolean hasNext() {
 return (position < dates.size());
 }

480

 public Date next() {
 return hasNext()? dates.get(position++) : null;
 }

 public void remove() {
 if (hasNext()) dates.remove(position);
 }
}

The HolidaysIterator class implements Iterator<Date> (Line
3). The internal data structure is an array list (Line 4)
and is passed to the iterator when the iterator is
constructed. The position variable records the current
position in the array list. Invoking the next() method
retrieves an element and moves the position forward (Line
16).

Listing 5 gives a test program that creates a Holidays
object and using an iterator to traverse its elements.

Listing 5 TestHolidays.java (Test Iterator for Holidays)

import java.util.*;

public class TestHolidays {
 public static void main(String[] args) {
 Holidays holidays = new Holidays();
 holidays.add(new java.util.Date());
 holidays.add(new GregorianCalendar(2005, 9, 1).getTime());
 holidays.add(new java.util.Date(12345678900000L));

 Iterator iterator = holidays.iterator();
 while (iterator.hasNext())
 System.out.println(iterator.next());
 }
}

A Holidays object is created in Line 5. Three dates are
added to the object (Lines 6-8). Line 10 creates an iterator
for the Holidays object. Lines 11-12 uses a loop for
traversing the iterator.

The iterator pattern enables you to encapsulate the internal
storage structure for the data in the aggregate object. So,
the design makes the classes flexible and easy to maintain.
For example, if you decide to change the internal
representation for the dates from an array list to an array,
you need to change the Holidays and HolidaysIterator
classes, but not the client program.

5 The Strategy Pattern

481

The Strategy pattern provides a strategy object that
encapsulates an algorithm to implement a strategy. A typical
outline of this design pattern is illustrated in Listing 6.

Listing 6 Outline of the Strategy Pattern

public interface StrategyInterface {
 public void performStrategy(optionalParameters);
}

public class Strategy1 implements StrategyInterface {
 public void performStrategy(optionalParameters) {
 ...
 }
}

public class Strategy2 implements StrategyInterface {
 public void performStrategy(optionalParameters) {
 ...
 }
}

public class Context {
 private StrategyInterface strategy;

 public void useStrategy(...) {
 strategy.performStrategy(optionParameters);
 }

 public void setStrategy(StrategyInterface strategy) {
 this.strategy = strategy;
 }
}

The Strategy pattern defines the strategy in
StrategyInterface (Line 1). Concrete classes Strategy1 (Line
4) and Strategy2 (Line 10) implement StrategyInterface with
specific algorithms on how to perform the strategy. The
Context class can choose an appropriate strategy to achieve
a desired purpose.

A well-known example of the Strategy pattern in the Java API
is the layout manager. LayoutManager defines a strategy
interface with the layoutContainer method for performing the
strategy. A concrete layout manager such as FlowLayout,
GridLayout, and BorderLayout implements LayoutManager using
concrete algorithms on how to layout components in a
container. A Container object can choose an appropriate
layout manager and invoke the doLayout() method to layout
the components. The doLayout() method invokes a layout
manager object’s layoutContainer method to produce a

482

particular layout. Figure 1 illustrates the relationships
among these classes.

java.awt.Container
-layout: LayoutManager

+setLayout(layout: LayoutManager): void

+doLayout(): void

…

java.awt.FlowLayout

«interface»
java.awt.LayoutManager

+layoutContainer(parent: Container): void

…

java.awt.GridLayout

Figure 1

A container can choose a layout strategy to produce a
desired layout.

In the Strategy pattern, strategies are encapsulated in the
concrete strategy classes. The context class does not need
to know how a strategy is implemented. Furthermore, the
context can dynamically change a strategy to use a different
algorithm.

Instead of inheriting strategies, the context class contains
a strategy object. This is composition. Composition is more
flexible than inheritance. As demonstrated in this pattern,
composition allows you to change the strategy object at
runtime.

6 The Adapter Pattern
The Adapter pattern defines a class, called adapter, which
acts as the middleman between two classes with incompatible
interfaces and make them work together. A common analogy for
the Adapter pattern is the electric outlet adapter. The
electric outlets have different shapes all over the world.
For a US electric plug to connect an outlet in some Asian
country, you need an adapter.

Suppose there are two interfaces A and B. You can create an
adapter for B to be compatible with A. B is called an
adaptee and A is called a target interface. The adapter
should implement the target interface and contain an
adaptee, as shown in Listing 7.

Listing 7 Outline of the Adapter Pattern
public interface A {
 public void doSomething(...);
}

public interface B {
 public void takeSomeAction(...);

483

}

public class Adapter implements A {
 private B b;

 public Adapter(B b) {
 this.b = b;
 }

 public void doSomething(...) {
 b.takeSomeAction(...);
 }
}

The Adapter class implements A. So, an instance of Adapter
can be used wherever a variable of A is required. Invoking
Adapter’s doSomething method causes B’s takeSomeAction
method to be invoked.

You learned how to create an event adapter in §25.7.1. Event
adapters are examples of the Adapter pattern. Listing 8
gives an example to create an adapter for ActionEvent.

Listing 8 ActionEvent Adapter

public class Adapter implements ActionListener {
 private Adaptee adaptee;

 public Adapter(Adaptee adaptee) {
 this.adaptee = adaptee;
 }

 public void actionPerformed(ActionEvent e) {
 adaptee.processActionEvent(e);
 }
}

public class Adaptee {
 public void processActionEvent(ActionEvent e) {
 ...
 }
}

Adapter implements the target interface ActionListener and
contains the adaptee.

Now consider to write an adapter from the Enumeration
interface to the Iterator interface, as shown in Figure 2.
Both Enumeration and Iterator are used for traversing
elements in a collection. Iterator was introduced in JDK 1.2
to supersede Enumeartion.

484

Enumeration2Iterator

+Enumeration2Iteration(enumeration:
Enumeration)

«interface»
java.util.Enumeration<E>

+hasNext(): boolean

+next(): E

«interface»
java.util.Iterator<E>

+hasNext(): boolean

+next(): E

+remove(): void

Figure 2

You can write an adapter from Enumeration to Iterator.

The adapter Enumerator2Iterator, given in Listing 9,
implements Iterator and contains Enumeration. The
hasMoreElement() and nextElement() methods in Enumeration
are essentially same as the hasNext() and next() methods in
Iterator. So, hasNext() in Iterator is delegated to
hasMoreElement() in Enumeration and next() in Iterator is
delegated to nextElement() in Enumeration. However, Iterator
has the remove() method to remove an element, but
Enumeration does not. So, an UnsupportedOperationException
is thrown to indicate that the remove method is not
supported by Enumeration.

Listing 9 Enumerator2Iterator.java

import java.util.*;

public class Enumeration2Iterator<E> implements Iterator<E> {
 Enumeration<E> enumeration;

 public Enumeration2Iterator(Enumeration<E> enumeration) {
 this.enumeration = enumeration;
 }

 public boolean hasNext() {
 return enumeration.hasMoreElements();
 }

 public E next() {
 return enumeration.nextElement();
 }

 public void remove() {
 throw new UnsupportedOperationException();
 }
}

485

7 The Decorator Pattern
The Decorator pattern uses a decorator class to attach
additional functionalities to objects (called decoratees)
dynamically through both inheritance and composition. Using
this pattern, designers can easily add new functionalities
to objects without creating separate classes. In general,
both the decorator and decoratee are subclasses of the same
interface and the decorator also contains a decoratee
object, as shown in Figure 3. A typical outline of this
design pattern is shown in Listing 10.

 Common Interface

Decoratee Class Decorator Class
Wraps a decoratee

Figure 3

Decorator and decoratee are subclasses of a common
interface. A decorator contains a decoratee with additional
functions.

Listing 10 Outline of the Decorator Pattern

public interface CommonInterface {
 public void performSomeFunction(...);
 ...
}

public class Decoratee implements CommonInterface {
 public void performSomeFunction(...) {
 // perform it
 }
}

public class Decorator implements CommonInterface {
 private CommonInterface decoratee;

 public Decorator(CommonInterface decoratee) {
 this.decoratee = decoratee;
 }

 public void performSomeFunction(...) {
 // perform some new function
 ...

 // also perform the existing function in decoratee;
 decoratee.performSomeFunction(...);
 }

486

}

<Side Remark: JScrollPane decorator>
JScrollPane is an example of the Decorator pattern. It adds
the automatic scrolling ability to any instance of
Component. Consider the scenario without JScrollPane, you
have two options: (1) Create a separate class for each GUI
component. For example, you may create a subclass of
JTextArea named ScrollableTextArea for scrolling a text
area, a subclass of JList named ScrollableList for scrolling
a list, and a subclass of JTable named ScrollableTable for
scrolling a table. (2) Code the scrolling function in the
GUI components such as JTextArea, JList, and JTable. Neither
is a good option. The first option creates many new classes
with the same new function. The second option adds the same
code in the classes. Both options present maintenance
problems. The Java designer applied the Decorator pattern to
design JScrollPane, as shown in Figure 4.

javax.swing.Component

GUI components, such as
JTextArea, JList, and JTable

javax.swing.JScrollPane

wrap a component in JScrollPane

Figure 4

JScrollPane subclasses Component and adds additional
function to a component.

In general, the decorator class (e.g., JScrollPane) and the
decorate class (e.g., JTextArea) has the same common
interface and the decorator class wraps a decoratee. Like
JTextArea, JList, and JTable, JScrollPane is a subclass of
Component. So, you can use JScrollPane wherever a Component
is needed. JScrollPane is a decorator object that wraps any
object of JComponent to add additional function to a
component. A ScrollPane for a component seamlessly combines
the new scrolling function with the existing function of the
component into an object of JScrollPane. For example, the
following statement creates a JScrollPane object that
combines scrolling function with a text area. So, the
resulting object is a scrollable text area.

JScrollPane scrollPane = new JScrollPane(new JTextArea());

Another well-known example of the Decorator pattern is the
design of I/O stream classes in the Java API.
BufferedInputStream and ObjectInputStream are the decorator

487

classes for FileInputStream, as shown in Figure 5. You can
wrap a BufferedInputStream on a FileInputStream to add the
buffering ability for an object of FileInputStream and wrap
an ObjectInputStream on a FileInputStream to add the object
input ability for an object of FileInputStream, as shown in
the following statements:

BufferedInputStream input1 = new BufferedInputStream(
 new FileInputStream("text.dat"));

ObjectInputStream input2 = new ObjectInputStream(
 new FileInputStream("text.dat"));

java.io.InputStream

java.io.FileInputStream

java.io.BufferedInputStream
wraps an InputStream

java.io.ObjectInputStream
wraps an InputStream

Figure 5

BufferedInputStream and ObjectInputStream are the decorator
classes for FileInputStream.

Since ObjectInputStream can decorate any InputStream, you
can also wrap an ObjectInputStream on a BufferedInputStream
that wraps on a FileInputStream as follows,

ObjectInputStream input3 = new ObjectInputStream(
 new BufferedInputStream(new FileInputStream("text.dat")));

You learned from the outline of the Decorator pattern and
saw two of its examples. Now you can create your own example
using the Decorator pattern. Suppose you can build a custom
book by adding new chapters into a custom core. The custom
core consists of a fixed set of chapters. The cost of each
additional chapter is $2. You may declare a custom chapter
decorator, as shown in Figure 6.

Book

CustomCore CustomBookDecorator

Figure 6

CustomBookDecorator adds a new chapter to the book.

488

Listing 11 gives the source code of these three classes:
Book, CustomCore, and CustomBookDecorator.

Listing 11 Decorator Pattern Example

public class TestDecorator {
 public static void main(String[] args) {
 Book book = new CustomCore();
 book = new CustomBookDecorator(19, book);
 book = new CustomBookDecorator(24, book);
 book = new CustomBookDecorator(25, book);

 System.out.println("contents are " + book.toString());
 System.out.println("cost is " + book.cost());
 }
}

interface Book {
 public double cost();
}

class CustomCore implements Book {
 public double cost() {
 return 50;
 }

 public String toString() {
 return "Custom Core";
 }
}

class CustomBookDecorator implements Book {
 private Book book;
 int chapterNo;

 public CustomBookDecorator(int chapterNo, Book book) {
 this.book = book;
 this.chapterNo = chapterNo;
 }

 public double cost() {
 return book.cost() + 2;
 }

 public String toString() {
 return book.toString() + ", Chapter " + chapterNo;
 }
}

The Book interface (Lines 13-15) defines the cost method
that returns the cost of the book. The CustomCore class
(Lines 17-25) is a concrete class for Book that defines a
custom core. The CustomBookDecorator class (Lines 27-43) is
a decorator class for a book, which adds a new chapter to an

489

existing book. The cost() and toString() methods return the
cost and contents of the new book.

TestDecorator is a test class that creates a book from
custom core (Line 3), adds chapters 19, 24, and 25 to the
book (Lines 4-5). So the final contents for the book are
“Custom Core, Chapter 19, Chapter 24, Chapter 25” and the
cost is 56.0.

8 The Observer Pattern
The Observer pattern defines a dependency relationship
between an object (called subject) and its dependent objects
(called observers). When the subject object changes its
state, all the observer objects are notified. The GUI event
model is designed using the Observer pattern. The listeners
are registered with the source to listen for an event. When
the event occurs, the source notifies the listeners. The
model-view-controller architecture is also an example of the
Observer pattern. Whenever the data in the model is changed,
its dependent views are notified and updated.

Prior to JDK 1.1, you had to declare a subject class by
extending the java.util.Observable class and declare an
observer class by implementing the java.util.Observer
interface. Observable and Observer were introduced in JDK
1.0. With the arrival of the new Java event delegation
model, using Observable and Observer is obsolete. The JDK
event delegation model provides a superior architecture for
supporting the Observer pattern component development. The
subject can be implemented as a source with appropriate
event and event listener registration methods. The observer
can be implemented as a listener. So, if data are changed in
the subject, the observer will be notified.

A typical outline of this design pattern is shown in Listing
12.

Listing 12 Outline of the Observer Pattern

public class SubjectClass {
 public void stateChange(...) {
 // fire an ActionEvent to notify the observers
 processEvent(new ActionEvent(this,
 ActionEvent.ACTION_PERFORMED, null));
 }

 /** implement addActionListener, removeActionListener,
 * and processEvent. Same as in Listing 25.2 on page XXX.
 */
}

490

public class Observer1Class implements ActionListener {
 ...

 public void actionPerformed(ActionEvent e) {
 // process the notification
 }
}

public class Observer2Class implements ActionListener {
 ...

public void actionPerformed(ActionEvent e) {
 // process the notification
 }
}

public class Test {
 public static void main(String[] args) {
 SubjectClass subject = new SubjectClass();
 Observer1Class Observer1 = new Observer1Class();
 Observer2Class Observer2 = new Observer2Class();
 subject.addActionListener(Observer1);
 subject.addActionListener(Observer2);

 ...
 }
}

The observers are interested in the changes of the subject.
The subject fires an event (e.g., ActionEvent) to notify the
observers by invoking the observer’s handling method (e.g.,
actionPerformed) when the changes are made on the subject.
The observers are registered with the subject in order to
receive the notification. Using the event delegation model
to implement the Observer pattern makes the classes easy to
maintain. The subject and observer classes are decoupled.
You can plug an observer to observe any subject that fires
the event that the observer is capable of processing.

9 The Template Method Pattern
The Template Method pattern defines the skeleton of an
algorithm in a method, deferring the detailed implementation
to subclasses. This pattern is widely used in the Java API.
Consider the following four examples of the Template Method
pattern.

The Comparable interface defines the template method
compareTo for comparing this object with a specified object.
If a class implements Comparable, its objects can be
compared using the compareTo method. The method returns a
negative integer, zero, or a positive integer if this object

491

is less than, equal to, or greater than the specified
object. Many classes in the Java API implement Comparable.
For example, the wrapper classes Byte, Short, Integer, Long,
Float, Double, and Character implement Comparable, and the
Date and Calendar classes implement Comparable. So, you can
compare two Integer objects or two Date objects using the
compareTo method. The java.util.Arrays.sort(Object[]) method
sorts an array of comparable objects using the compareTo
method. To use this sort method, the objects must be
instances of Comparable.

The paintComponent method defined in javax.swing.JComponent
is used to paint a graphics context in a Swing GUI
component. This is a template method. To paint something,
you override this method with specific instructions. Your
program never directly invokes the paintComponent method.
This method is invoked by the JVM whenever the component
needs to be painted or repainted.

The Applet class defines the template methods init(),
start(), stop(), and destroy(). These methods are called by
the JVM to control an applet from a Web browser. By default,
these methods do nothing. To perform specific functions, you
create a subclass of Applet to override these methods. The
Applet class defines a framework for creating applets.

In the Java event delegation model, the listener must be an
instance of a listener interface. A listener interface
defines the handlers for processing the event. These methods
are the template methods that are invoked by the source
component. For example, to be a listener for ActionEvent,
the listener class must implement ActionListener. The
actionPerformed method in ActionListener is a template
method. The listener class provides the detailed instruction
on how to handle the event in the actionPerformed method.
The source component invokes the listener’s actionPerformed
method to process the event.

The Strategy pattern and the Template Method pattern are
very similar. Both patterns implement specific algorithms in
the template methods. For example, you override the init()
method in the Applet class to specify how to initialize an
applet using the Template Method pattern and implement the
layoutContainer method in the LayoutManager interface to
specify how to layout components using the Strategy pattern.
The difference, however, lies in whether the algorithms can
be dynamically plugged. The Strategy pattern defines a
strategy object that contains the algorithm in the template
method. The strategy object can be dynamically set in an
application, commonly using a set method. Using the Template

492

Method pattern, the algorithms can not be changed
dynamically. For example, for an applet, you can change its
layout manager using the setLayout method, but you cannot
change its init method with a new algorithm at runtime.

10 The Command Pattern
The Command pattern defines a command to be executed. The
command is encapsulated into an object, called the command
object. The command object is used by a sender object to
send requests to a receiver object. The sender does not need
to know the interface of the receiver. This pattern
decouples the sender from the receiver and provides
flexibility and extensibility for both senders and
receivers.

Let us use a simple example to demonstrate this pattern. The
example designs a remote controller (i.e., sender) to turn
on/off a TV and VCR (i.e., receiver). The TV and VCR have
different interfaces, as shown in the TV and VCR classes in
Listing 13. To send a command from the sender to the
receiver, define the Command interface with the execute()
method and four concrete classes TVOnCommand, TVOffCommand,
VRCOnCommand, and VCROffCommand of the Command interface for
turning on/of TV and VRC, as shown in Listing 14.

Listing 13 Receiver Classes

class TV {
 public void turnOn() {
 System.out.println("Turn on the TV");
 }

 public void turnOff() {
 System.out.println("Turn off the TV");
 }
}

class VCR {
 public void start() {
 System.out.println("Start the VCR");
 }

 public void stop() {
 System.out.println("Stop the VCR");
 }
}

Listing 14 Command Interface and Command Classes

interface Command {
 public void execute();

493

}

class TVOnCommand implements Command {
 private TV tv;

 public TVOnCommand(TV tv) {
 this.tv = tv;
 }

 public void execute() {
 tv.turnOn();
 }
}

class TVOffCommand implements Command {
 private TV tv;

 public TVOffCommand(TV tv) {
 this.tv = tv;
 }

 public void execute() {
 tv.turnOff();
 }
}

class VCROnCommand implements Command {
 private VCR vcr;

 public VCROnCommand(VCR vcr) {
 this.vcr = vcr;
 }

 public void execute() {
 vcr.start();
 }
}

class VCROffCommand implements Command {
 private VCR vcr;

 public VCROffCommand(VCR vcr) {
 this.vcr = vcr;
 }

 public void execute() {
 vcr.stop();
 }
}

494

The controller uses two methods clickOn and clickOff to
request a device to turn on and off. The controller has no
knowledge of the receiver’s interface. The controller sends
a request to a receiver through a Command object by invoking
the command’s execute() method. One Command object is
associated with one request. Since there are two requests in
the controller, the controller needs to contain two Command
objects. The command can be dynamically set in a controller
or created in the constructor of the controller class, as
shown in Listing 15.

Listing 15 Sender Class

class RemoteController {
 private Command onCommand, offCommand;

 public RemoteController(Command onCommand, Command
offCommand) {
 this.onCommand = onCommand;
 this.offCommand = offCommand;
 }

 public void clickOn() {
 onCommand.execute();
 }

 public void clickOff() {
 offCommand.execute();
 }

 public void setOnCommand(Command onCommand) {
 this.onCommand = onCommand;
}

 public void setOffCommand(Command offCommand) {
 this.offCommand = offCommand;
 }
}

Listing 16 gives a test program that creates a sender and
two receivers. The program creates a TV as a receiver (Line
3), two commands on the TV (Lines 4-5), a RemoteController
for the two commands as a sender (Lines 6-7). The controller
invokes the clickOn() method (Line 8). The clickOn() method
then invokes the execute() method on tvOnCommand. The
execute() method finally invokes the turnOn() method on tv.
Notice that the sender and the receiver are completely
decoupled. The sender issues the request, but does not know
how the request will be carried out by the receiver.

Listing 16 TestCommandPattern.java

495

public class TestCommandPattern {
 public static void main(String[] args) {
 TV tv = new TV();
 Command tvOnCommand = new TVOnCommand(tv);
 Command tvOffCommand = new TVOffCommand(tv);
 RemoteController controller =
 new RemoteController(tvOnCommand, tvOffCommand);
 controller.clickOn();
 controller.clickOff();

 VCR vcr = new VCR();
 Command vcrOnCommand = new VCROnCommand(vcr);
 Command vcrOffCommand = new VCROffCommand(vcr);
 controller.setOnCommand(vcrOnCommand);
 controller.setOffCommand(vcrOffCommand);
 controller.clickOn();
 controller.clickOff();
 }
}

The controller can also be used to control a VCR. The
program creates a VCR (Line 11) and two commands on the VCR
(Lines 12-13). These two new commands are set in the
controller (Lines 14-15). The controller now can invoke the
clickOn() and clickOff() methods to control the VCR (Lines
16-17). So, the output of the program is:

Turn on the TV
Turn off the TV
Start the VCR
Stop the VCR

As seen from this example, one design may use several design
patterns. The example uses the Command pattern. Since the
commands can be dynamically set in a controller, the example
also utilizes the Strategy pattern.

11 The Factory Method Pattern
The Factory Method pattern defines an abstract method for
creating an object, but let subclasses decide which class to
instantiate. Factory Method lets a class defer instantiation
to subclasses. A typical outline of this design pattern is
shown in Listing 17.

Listing 17 Outline of Factory Method Pattern

abstract class or interface Base {
 ...

 public abstract SomeSuperType factoryMethod(...);

496

}

class SubClass extends or implements Base {
 ...

 public SomeSuperType factoryMethod(...) {
 SomeSuperType object = new ConcreteSubtype(...);
 ...
 return object;
 }
}

A factory method for creating an object is defined in an
abstract class or an interface (Line 4). The method is
abstract because it does not have enough information for
implementation in the base class (Line 1). The subclasses
implement the factory method. The return type SomeSuperType
of the factory method is usually an abstract class or an
interface. ConcreteSubtype is a subtype of SomeSuperType.
Consider the following two examples for the Factory Method
pattern.

Consider three examples. The first example creates a base
class HosuePlan with factory methods createWindow and
createDoor (Lines 2-3), as shown in Listing 18. For
different type of houses, these two methods are implemented
differently. So, their implementation is deferred to
subclasses of HousePlan. LuxuryHousePlan extends HousePlan
and implements createWindow and createDoor by creating
concrete objects.

Listing 18 Factory Method Pattern Example

abstract class HousePlan {
 public abstract Window createWindow(...);
 public abstract Door createDoor(...);

 public House createHouse() {
 return new House(createWindow(), createDoor());
 }
}

class LuxuryHousePlan extends HousePlan {
 public Window createWindow() {
 return new LuxuryWindow(...);
 }

 public Door createDoor();
 return new LuxuryDoor(...);
 }
}

497

public class Test {
 public static void main(String[] args) {
 HousePlan housePlan = new LuxuryHousePlan();
 housePlan.createHouse();
 }
}

For the second example, let us review GenericMatrix
presented in §20.9, “Case Study: Generic Matrix Class.” This
class defines the abstract method zero to return an object.
The instantiation of this object must be deferred to
subclasses IntegerMatrix and RationalMatrix. The zero()
method returns new Integer(0) for the Integer type and new
Rational(0, 1) for the Rational type. This method cannot be
implemented in GenericMatrix and must be implemented in the
subclasses IntegerMatrix and RationalMatrix.

For the third example, let us review the Collection
interface in the Java API. This class defines the iterator()
method that creates an Iterator for a collection such as a
set and a list. The implementation of iterator() depends on
the concrete data structure that supports a specific type of
collection. An iterator for a hash set is different from the
one for a linked list. So, the iterator() method is
implemented in a concrete subclass.

12 The Abstract Factory Pattern
The Abstract Factory pattern provides an abstract class or
interface for creating a family of related or dependent
objects without specifying their concrete classes. A typical
outline of this pattern is shown in Listing 19.

Listing 19 Outline of Abstract Factory Pattern

abstract class or interface AbstractFactory {
 ...

 public abstract SomeSuperType1 createObject1(...);
 public abstract SomeSuperType2 createObject2(...);
}

class ConcreteFactory1 extends or implements AbstractFactory {
 ...

 public SomeSuperType1 createObject1(...) {
 SomeSuperType1 object = new ConcreteSubtype1(...);
 ...
 return object;
 }

498

 public SomeSuperType2 createObject2(...) {
 SomeSuperType2 object = new ConcreteSubtype2(...);
 ...
 return object;
 }
}

class ConcreteFactory2 extends or implements AbstractFactory {
 ...

 public SomeSuperType1 createObject1(...) {
 SomeSuperType1 object = new ConcreteSubtypeA(...);
 ...
 return object;
 }

 public SomeSuperType2 createObject2(...) {
 SomeSuperType2 object = new ConcreteSubtypeB(...);
 ...
 return object;
 }
}

class ClientClass {
 ...

 public void doSomething(AbstractFactory factory) {
 SomeSuperType1 object1 = factory.createObject1(...);
 SomeSuperType2 object1 = factory.createObject2(...);
 ...
 }
}

An abstract factory defines two abstract methods for
creating objects (Lines 1-7). A concrete factory class
implements these methods to create objects (Lines 8-22). A
client class may pass a concrete factory object to invoke
the doSomething method in Line 27.

The HosuePlan example in the preceding section was designed
using the Factory Method pattern. The Abstract Factory
pattern can be applied to the same problem, as shown in
Listing 20. A factory object is used to create products in
the createHouse method (Line 4). The HouseFactory interface
defines the methods for creating windows and doors.
LuxuryHouseFactory is a concrete class that implements the
methods for creating windows and doors.

Listing 20 Abstract Factory Pattern Example

class HousePlan {

499

 ...

 public House createHouse(HouseFactory factory) {
 return new House(factory.createWindow(),
factory.createDoor());
 }
}

interface HouseFactory {
 public abstract Window createWindow(...);
 public abstract Door createDoor(...);
}

class LuxuryHouseFactory implements HouseFactory {
 public Window createWindow() {
 return new LuxuryWindow(...);
 }

 public Door createDoor();
 return new LuxuryDoor(...);
 }
}

public class Test {
 public static void main(String[] args) {
 HousePlan housePlan = new HousePlan();
 LuxuryHouseFactory factory = new HousePlan();
 housePlan.createHouse(factory);
 }
}

The Abstract Factory pattern is very similar to the Factory
Method pattern. Both patterns defer object creation to
concrete subclasses. However, the Factory Method pattern
uses polymorphism to create objects while the Abstract
Factory pattern uses delegation to create objects. In the
Test class in Listing 18 for the Factory Method pattern,
invoking creatHouse in Line 4 causes the concrete methods
createWindow and createDoor defined in the LuxuryHousePlan
to be invoked at runtime. In the Test class in Listing 20
for the Abstract Factory pattern, createWindow and
createDoor are invoked from a factory object. Creating
objects are delegated to the factory object.

12 The Facade Pattern
The Facade pattern provides a unified interface to a set of
interfaces in a subsystem. Facade defines a higher-level
interface that makes the subsystem easier to use. Before
applying the Facade pattern, a subsystem may look like the
one in Figure 6(a) where the components are accessed by many

500

clients. Applying the Facade pattern, you can create a
unified interface called Facade, as shown in Figure 6(b),
where the clients access the components in the subsystem
through the Facade.

Clients

Subsystem

Facade

 (a) (b)

Figure 6

The Facade pattern provides a unified interface for
accessing the components in a subsystem.

To demonstrate this pattern, consider the example in Listing
21. The program creates three objects light, stove, and air
conditioner. When a person leaves the house, turn off the
light, check the stove, and turn off the air conditioner.
When a person enters the house, turn on the light and turn
on the air conditioner.

Listing 21 HouseControlSimulator.java

class HouseControlSimulator {
 Light light = new Light();
 Stove stove = new Stove();
 AirConditioner air = new AirConditioner();

 public static void main(String[] args) {
 // Leave the house
 light.turnOff();
 stove.check();
 air.setTemparature(80);

 // Enter the house
 light.turnOn();
 air.setTemparature(75);
 }
}

This design can be improved using the Facade pattern as
shown in Listing 22.

Listing 22 HouseControlSimulatorUsingFacade.java

class HouseControlSimulatorUsingFacade {
 Light light = new Light();

501

 Stove stove = new Stove();
 AirConditioner air = new AirConditioner();

 public static void main(String[] args) {
 HouseControlFacade façade = new HouseControlFacade(
 light, stove, air);

 façade.leaveHouse();
 façade.enterHouse();
 }
}

class HouseControlFacade {
 Light light;
 Stove stove;
 AirConditioner air;

 public HouseControlFacade(
 Light light, Stove stove, AirConditioner air) {
 this.light = light;
 this.stove = sotve;
 this.air = air;
 }

 public void leaveHouse() {
 light.turnOff();
 stove.check();
 air.turnOff();
 }

 public void enterHouse() {
 light.turnOn();
 air.turnOn();
 }
}

The light, stove and air conditioner are the components in
the house subsystem. The Facade pattern simplifies the
interface for accessing these components. In Listing 21, the
client program directly accesses each individual component,
as shown in Figure 7(a). In Listing 22, the client program
accesses each individual component through the facade, as
shown in Figure 7(b).

Client

Light Stove Air Conditioner

Client

Light Stove Air Conditioner

HouseControlFacade

 (a) (b)

502

Figure 7

The Facade pattern provides a unified interface for
accessing light, stove, and air conditioner.

The Facade pattern helps reduce complexity by structuring a
system into subsystems. It hides the implementation of the
subsystem from clients, making the subsystem easy to use.

NOTE

The Facade pattern decouples the client from the
classes in the subsystem. However, a facade does
not encapsulate the subsystem; it merely
provides a simplified interface for accessing
the subsystem. The client can still access the
components in the subsystem directly if
necessary. For example, in Listing 21, the
client can directly access the components if
needed.

12 The Composite Pattern
The Composite pattern composes objects into tree structures
to represent part-whole hierarchies. Composite lets clients
treat individual objects and compositions of objects
uniformly. A typical outline of this pattern is shown in
Figure 8(a), where composite contains components. Since
composite is a component itself, composites can be embedded
inside composites. The Composite class should contain the
methods for adding or removing components and also a method
for obtaining its children. The components in the Composite
class can be stored a list.

Component

Leaf Leaf Composite

java.awtComponent

java.awt.Container

javax.swing.JComponent

java.awt.Button

Leaf Leaf

 (a) (b)

Figure 8

The Composite pattern treats individual objects and
composite objects uniformly.

A familiar example of the Composite pattern is the Component
and Container hierarchy in the Java GUI API, as shown in
Figure 8(b). Component is the root class for all GUI

503

components. A container can contain components. A container
is also a component. A container is treated just like a
component. JComponent is a subclass of Container. So an
instance of JComponent such as JPanel can function as a
container. A JPanel can contain components including another
JPanel.

Consider another example with Product and CompositeProduct,
as shown in Figure 9. Book and Pen are individual products.
StationaryBundle is a composite product. Whenever a product
is added to or removed from a composite product, the price
of the composite product is changed. Listing 23 gives an
implementation of the CompositeProduct class.

Product
#name: String
#price: int

Book Pen CompositeProduct

StationaryBundle

Figure 9

The Composite class contains the methods for adding and
removing components.

Listing 23 CompositeProduct.java (Composite Class)

class CompositeProduct extends Product {
 private ArrayList products = new ArrayList();

 public void add(Product product) {
 products.add(product);
 price += produce.price;
 }

 public void remove(Product product) {
 if (products.contains(product)) {
 products.remove(product);
 price += produce.price;
 }
 }

 public Product[] getChild() {
 return products.toArray();
 }
}

504

The Composite pattern allows you to add new type of
components to the system and makes the system easy to
extend. Since the leaf and composite components are treated
uniformly, it makes clients simpler.

13 The Chain of Responsibility Pattern
The Chain of Responsibility pattern avoids coupling the
sender of a request to its receiver by giving more than one
object a chance to handle the request. Chain the receiving
objects and pass the request along the chain until an object
handles it. Normally, all the receiver objects on the chain
share a common interface for handling requests.

For example, a handler often partially handles an event and
then passes the event to another handler for further
processing. §14.4, “Radio Buttons,” presented the
RadioButtonDemo class which contains the actionPerformed
method. When an ActionEvent occurs, the handler first checks
whether the action is from a radio button. If so, the event
is processed. If not, it invokes the superclass’s
actionPerformed method to check whether the event is from a
check box. So, the event is processed through a chain of
responsibility.

The Chain of Responsibility pattern decouples the sender and
the receiver and enables a request to be processed by
multiple objects. The chain of handlers may be modified
dynamically by setting a receiver along the chain.

14 The Proxy Pattern
The Proxy pattern provides a surrogate or placeholder for
another object to control access to it. There are situations
in which a client does not or cannot reference an object
directly, but wants to still interact with the object. A
proxy object can act as the intermediary between the client
and the target object. A proxy has the authority to act for
another object. The proxy object has the same interface as
the target object. The proxy object holds a reference to the
target object and can forward requests to the target as
needed, as shown in Figure 10(a).

«interface»
Subject

request()

Proxy

request()

RealSubject

request()

Client

ImageIconProxy

paintIcon

ImageIcon

paintIcon

Client
«interface»

Icon
paintIcon

 (a) Outline (b) Example

505

Figure 10

The Proxy pattern provides a proxy object for a real
subject.

There are many reasons to use proxies. One reason is to
defer the instantiation of an object. For example, it is
expensive to load a large image file. If a program loads
many large images at once, it could cause a significant
performance hit. Also, if an application does not use all of
its images, it is a waste to create them upfront. A better
solution is to delay the creation of the image until it is
needed. Normally, you create an image icon using the
following statement,

ImageIcon icon = new ImageIcon(imagefileURL);

To defer loading image, you need to use a proxy object, as
follows:

ImageIcon icon = new ProxyImageIcon(imagefileURL);

ImageIconProxy is a proxy for ImageIcon, as shown in Figure
10(b). You can declare ImageIconProxy by either implementing
javax.swing.Icon or extends javax.swing.ImageIcon. As shown
in Listing 24, ImageIconProxy is a subclass of ImageIcon.
You can create an ImageIconProxy using one of the two
constructors by passing either a file name (Line 10) or a
file URL (Line 15). Since ImageIconProxy is a subclass of
ImageIcon, an ImageIcon can be replaced by an ImageIconProxy
in a client program. No ImageIcon object is created when an
instance of ImageIconProxy is created. When the component
that contains an ImageIconProxy is displayed, the paintIcon
method (Line 20) is invoked, which then creates an ImageIcon
(Lines 25, 29). The ImageIconProxy forwards the request to
an ImageIcon for displaying the image (Line 33).

Listing 24 ImageIconProxy.java (Proxy Class)

import java.awt.*;
import javax.swing.ImageIcon;

public class ImageIconProxy extends ImageIcon {
 private java.net.URL url;
 private String filename;
 private ImageIcon image;

 /** Constructs a proxy for delayed loading of an image file */
 public ImageIconProxy(String filename) {
 this.filename = filename;
 }

506

 /** Constructs a proxy for delayed loading of an image from URL */
 public ImageIconProxy(java.net.URL url) {
 this.url = url;
 }

 /** Override paintIcon to display image icon */
 public void paintIcon(final Component c, Graphics g, int x, int y) {
 // Load the image if it hasn't been loaded yet.
 if (image == null) {
 if (filename != null) {
 System.out.println("Loading " + filename);
 image = new ImageIcon(filename);
 }
 else if (url != null) {
 System.out.println("Loading " + url);
 image = new ImageIcon(url);
 }
 }

 image.paintIcon(c, g, x, y);
 }

 /** Override getIconWidth to return icon width */
 public int getIconWidth() {
 return (image == null) ? 200 : image.getIconWidth();
 }

 /** Override getIconHeight to return icon height */
 public int getIconHeight() {
 return (image == null) ? 100 : image.getIconHeight();
 }
}

Listing 25 gives a test program that uses ImageIconProxy to
delay loading images. The program creates a tabbed pane
(Line 6) and adds two labels to the tabbed pane (Lines 7-
10), as shown in Figure 11. The labels are created with
image icons. The image icons are controlled by proxies. When
the label is displayed for the first time, the proxy’s
paintIcon method is invoked. If no image icon has been
created, the image icon will be created in the proxy. The
proxy controls this real image icon to display the image.

Figure 11

The image icons are controlled by proxies.

507

Listing 24 TestImageIconProxy.java (Test Proxy Class)

import java.awt.*;
import javax.swing.*;

public class TestImageIconProxy extends JApplet {
 public TestImageIconProxy() {
 JTabbedPane tabbedPane = new JTabbedPane();
 tabbedPane.add(new JLabel(new ImageIconProxy(
 getClass().getResource("image/us.gif"))), "US");
 tabbedPane.add(new JLabel(new ImageIconProxy(
 getClass().getResource("image/ca.gif"))), "Canada");

 add(tabbedPane, BorderLayout.CENTER);
 }
}

14 The State Pattern
The State pattern allows an object to alter its behavior
when its internal state changes. The object will appear to
change its class. The object represents a state. It is
automatically changed to a new state object when the state
changes. The State pattern structure can be outlined as
shown in Figure 12(a). A sample implementation is given in
Listing 25.

 Context

request()

State

handle()

… ConcreteStateA ConcreteStateB

Customer

request()

State

addMiles

Regular Silver Gold

 (a) structure (b) example

Figure 12

The State pattern uses objects to represent states.

Listing 25 Outline of State Pattern

public class Context {
 State state1 = new ConcreteStateA();
 State state2 = new ConcreteStateB();
 State state3 = new ConcreteStateC();
 State state4 = new ConcreteStateD();
 State state = state1;

 public void setState(State state) {
 this.state = state;
 }

508

 public void request1(...) {
 ...
 state.handle1(...);
 }

 public void request2(...) {
 ...
 state.handle2(...);
 }

 ...
}

public interface State {
 public void handle1(...);
 public void handle2(...);
}

public class ConcreteStateA implements State {
 Context context = new Context();

 public ConcreteStateA(Context context) {
 this.context = context;
 }

 public void handle1(...) {
 ...
 context.setState(context.state1); // state1 could state2 or else
 }

 public void handle2(...) {
 ...
 context.setState(context.state2); // state2 could state1 or else
 }
}

To demonstrate the State pattern, consider the following
example. Suppose an airline classifies the customers into
three categories: regular, silver, and gold, based on their
award miles. Initially, a customer obtains the regular
status. If the customer has more than 20000 award miles, the
customer is upgraded to the silver status; if the customer
has more than 60000 award miles, the customer is upgraded to
the gold status. For every actual mile, a gold customer
receives three award miles, a silver customer receives two
award miles, and a regular customer receives one award mile.
You can use the State pattern to design the classes:
Customer, State, Regular, Silver, and Gold, as shown in
Figure 12(b). Listing 26 implements these classes.

509

Listing 26 Example of State Pattern

class Customer {
 State goldState = new Gold(this);
 State silverState = new Silver(this);
 State regularState = new Regular(this);
 State state = regularState;

 public void setState(State state) {
 this.state = state;
 }

 public State getState() {
 return state;
 }

 public void addMiles(int miles) {
 state.addMiles(miles);
 }

 public String toString() {
 return state.toString();
 }
}

abstract class State {
 int awardMiles;
 String status;
 final static int SILVER_THRESHOLD = 20000;
 final static int GOLD_THRESHOLD = 60000;

 public abstract void addMiles(int miles);

 public String getStatus() {
 return status;
 }

 public int getAwardMiles() {
 return awardMiles;
 }

 public void setAwardMiles(int awardMiles) {
 this.awardMiles = awardMiles;
 }

 public String toString() {
 return "Status: " + status + " and award miles: " +
awardMiles;
 }
}

510

class Regular extends State {
 Customer customer;

 public Regular(Customer customer) {
 this.customer = customer;
 status = "Regualar";
 }

 public void addMiles(int miles) {
 awardMiles += miles;
 if (awardMiles > State.GOLD_THRESHOLD) {
 customer.goldState.setAwardMiles(awardMiles);
 customer.setState(customer.goldState);
 }
 else if (awardMiles > State.SILVER_THRESHOLD) {
 customer.silverState.setAwardMiles(awardMiles);
 customer.setState(customer.silverState);
 }
 }
}

class Silver extends State {
 Customer customer;

 public Silver(Customer customer) {
 this.customer = customer;
 status = "Silver";
 }

 public void addMiles(int miles) {
 awardMiles += 2 * miles;
 if (awardMiles > State.GOLD_THRESHOLD) {
 customer.goldState.setAwardMiles(awardMiles);
 customer.setState(customer.goldState);
 }
 }
}

class Gold extends State {
 Customer customer;

 public Gold(Customer customer) {
 this.customer = customer;
 status = "Gold";
 }

 public void addMiles(int miles) {
 awardMiles += 3 * miles;
 }
}

511

public class TestCustomer {
 public static void main(String[] args) {
 Customer customer = new Customer();
 customer.addMiles(20000);
 System.out.println(customer.toString());

 customer.addMiles(100);
 System.out.println(customer.toString());

 customer.addMiles(100);
 System.out.println(customer.toString());

 customer.addMiles(20000);
 System.out.println(customer.toString());
 }
}

The Customer class contains all three states regularState,
silverState, and goldState. A customer is in regular state
initially (Line 5). The state changes automatically when new
award miles are added for the customer using the addMiles
method (Line 15).

The abstract State class defines the data and operations for
the state. The addMiles method (Line 30) is abstract and it
is left for concrete subclasses Regular, Silver, and Gold to
override. The addMiles method (Line 57) in the Regular class
first adds the actual miles to the award mile and then
checks whether the customer could be upgraded to gold or
silver status (Lines 59-66). If so, set a new state in the
customer.

The TestCustomer class creates a Customer with an initial
regular state. As the award miles increase, the state is
automatically changed to silver and gold.

The State pattern encapsulates all information for a state
into one object and this object also incorporates state
transition logic. It helps avoid inconsistent state since
state changes occurs using just the one state object and not
several objects or attributes.

The State pattern and the Strategy pattern are very similar
in the sense that both patterns enable the object to change
the behavior at runtime. The State pattern allows a state
object to be changed in a context object and the Strategy
pattern allows a strategy object to be plugged into an
object. Using the State pattern, you create a context object
with an initial state. The state object is automatically
changed in the context according to predefined transition

512

logics. Using the Strategy pattern, you control what
strategy to use on an object.

15 The Visitor Pattern
The Visitor pattern represents an operation to be performed
on the elements of an object structure. Visitor lets you
define a new operation without changing the classes of the
elements on which it operates. Figure 13 illustrates the
structure of the Visitor pattern.

 Client Visitor

visitConcreteElementA(ConcreteElementA)

visitConcreteElementB(ConcreteElementB)

ConcreteVisitor1 ConcreteVisitor2

Element

accept(Visitor)

ConcreateElementA

operationA()

ConcreateElementB

operationB()

objectStructure

Figure 13

The Visitor pattern defines operations to be performed on
elements of various types.

Visitor is usually an interface or abstract class that
defines the various visit methods for processing the
elements. A concrete visitor class defines a particular
process when visiting the elements. Element defines the
accept method that sets a visitor for the element. When an
element invokes the accept method, the processing of the
element is delegated to the visitor. Listing 27 gives a
sample implementation of the structure.

Listing 27 Sample Implementation of a Visitor Pattern

interface Visitor {
 public void visitConcreteElementA(ConcreteElementA element);
 public void visitConcreteElementB(ConcreteElementB element);
}

class ConcreteVisitor1 implements Visitor {
 public void visitConcreteElementA(ConcreteElementA element) {
 System.out.println("Visitor 1 for element type A");
 }

513

 public void visitConcreteElementB(ConcreteElementB element) {
 System.out.println("Visitor 1 for element type B");
 }
}

class ConcreteVisitor2 implements Visitor {
 public void visitConcreteElementA(ConcreteElementA element) {
 System.out.println("Visitor 2 for element type A");
 }

 public void visitConcreteElementB(ConcreteElementB element) {
 System.out.println("Visitor 2 for element type B");
 }
}

interface Element {
 public abstract void accept(Visitor visitor);
}

class ConcreteElementA implements Element {
 // Some operations

 public void accept(Visitor visitor) {
 visitor.visitConcreteElementA(this);
 }
}

class ConcreteElementB implements Element {
 // Some operations

 public void accept(Visitor visitor) {
 visitor.visitConcreteElementB(this);
 }
}

public class TestVisitor {
 public static void main(String[] args) {
 Visitor visitor1 = new ConcreteVisitor1();
 Visitor visitor2 = new ConcreteVisitor2();
 Element element1 = new ConcreteElementA();
 Element element2 = new ConcreteElementB();

 element1.accept(visitor1);
 element1.accept(visitor2);
 element2.accept(visitor1);
 element2.accept(visitor2);
 }
}

To demonstrate the Visitor pattern, consider an example of
visiting the elements in an array. Suppose that the element

514

types are Integer and Date. For an integer, the visitor uses
the NumberFomat class to format the number. For a date, the
visitor uses the DateFormat class to format the date, as
shown in Listing 28.

Listing 28 Example of a Visitor Pattern

import java.util.*;
import java.text.*;

interface Visitor {
 public void visitInteger(IntegerElement element);
 public void visitDate(DateElement element);
}

class ConcreteVisitor implements Visitor {
 public void visitInteger(IntegerElement element) {
 NumberFormat formatter = NumberFormat.getNumberInstance();
 System.out.println(formatter.format(element.getValue()));
 }

 public void visitDate(DateElement element) {
 DateFormat formatter = DateFormat.getDateTimeInstance();
 System.out.println(formatter.format(element.getValue()));
 }
}

interface Element {
 public abstract void accept(Visitor visitor);
}

class IntegerElement implements Element {
 private Integer value;

 public IntegerElement(Integer value) {
 this.value = value;
 }

 public int getValue() {
 return value;
 }

 public void accept(Visitor visitor) {
 visitor.visitInteger(this);
 }
}

class DateElement implements Element {
 private Date value;

 public DateElement(Date value) {

515

 this.value = value;
 }

 public Date getValue() {
 return value;
 }

 public void accept(Visitor visitor) {
 visitor.visitDate(this);
 }
}

public class VisitorDemo {
 public static void main(String[] args) {
 Element[] list = {new IntegerElement(1000),
 new DateElement(new Date())};
 for (int i = 0; i < list.length; i++)
 list[i].accept(new ConcreteVisitor());
 }
}

The Visitor interface (Lines 4-7) defines the methods for
visiting Integer and Date objects. ConcreteVisitor is a
concrete implementation of the interface. The Element
interface (Lines 21-23) defines the accept method for an
element to accept a visitor. The IntegerElement (Lines 25-
39) wraps an Integer value and implements the accept method
to let a visitor process the integer value. The DateElement
(Lines 41-55) wraps a Date value and implements the accept
method to let a visitor process the date value.

You may rewrite the program in Listing 27 as follows:

public class VisitorDemo {
 public static void main(String[] args) {
 Element[] list = {new IntegerElement(1000),
 new DateElement(new Date())};
 NumberFormat formatter1 =
NumberFormat.getNumberInstance();
 DateFormat formatter2 = DateFormat.getDateTimeInstance();

 for (int i = 0; i < list.length; i++) {
 if (list[i] instanceof Integer)
 System.out.println(formatter1.format(list[i]));
 else if (list[i] instanceof Date)
 System.out.println(formatter2.format(list[i]));
 }
 }
}

516

This revised program appears simpler than the program in
Listing 27. But the program developed using the Visitor
pattern is more flexible than this revised program. The
Visitor pattern allows you to add new operations by simply
declaring a new concrete visitor class and these operations
are centralized in a visitor. If the elements are in a
composite structure, The Visitor pattern allows you add
operations to the structure without changing the structure
itself.

This Visitor pattern uses a technical called double dispatch
to perform the operation on the element. When an element
invokes the accept method with a visitor, which accept
method is invoked is dynamically decided, depending on the
actual element type. This is a single dispatch using
polymorphism. When a visitor invokes the visitInteger method
with an element, which visitInteger method is invoked is
dynamically decided, depending on the actual visitor type.
This is another single dispatch using polymorphism. So the
Visitor pattern uses double dispatch.

16 The Memento Pattern
The Memento pattern can be used to return an object to one
of its previous states. This pattern can be implemented
using serialization in Java to store and restore an object.

17 The Prototype Pattern
The Prototype pattern specifies the kinds of objects to
create using a prototypical instance, and create new objects
by copying this prototype. The prototype pattern allows you
to make new instances by copying existing instances. This
pattern is supported in Java using the clone method. To
enable an object to be cloned, the class must implement the
Cloneable interface and override the clone() method.

18 The Mediator Pattern
The Mediator pattern can be used to centralize complex
communications and control between related objects. The
objects notify the mediator when their state changes and
respond to requests from the mediator. With the mediator in
place, the objects are completely decoupled from each other.

19 The Interpreter Pattern
The Interpreter pattern can be used to build an interpreter
for a language according to its grammar rules. You can use a
class hierarchy to represent grammar rules. The interpreter
recursively evaluate a parse tree of rule objects.

20 The Flyweight Pattern
The Flyweight pattern can be used to share objects rather
than creating separate objects with identical states. For

517

example, an icon object can be shared in a menu, a tool box,
or a button.

21 The Bridge Pattern
The Bridge pattern allows you to vary the implementation and
the abstraction by placing the two in separate class
hierarchies.

