
Supplement IV.J: Networking Using Datagram Protocol

For Introduction to Java Programming
By Y. Daniel Liang

28.10 (Optional) Datagram Socket
Clients and servers that communicate via a stream socket have a
dedicated point-to-point channel between them. To communicate, they
establish a connection, transmit the data, and then close the
connection. The stream sockets use TCP (Transmission Control Protocol)
for data transmission. Since TCP can detect lost transmissions and
resubmit them, transmissions are lossless and reliable. All data sent
via a stream socket is received in the same order in which it was sent.

<Margin note: datagram>
In contrast, clients and servers that communicate via a
datagram socket do not have a dedicated point-to-point
channel. Data is transmitted using packets. Datagram
sockets use UDP (User Datagram Protocol), which cannot
guarantee that the packets are not lost, or not received in
duplicate, or received in the order in which they were
sent. A datagram is an independent, self-contained message
sent over the network whose arrival, arrival time, and
content are not guaranteed.

<Margin note: packet>
In an analogy, a stream socket communication between a
client and a server is like a telephone connection with a
dedicated link. A datagram communication is like sending a
letter through the post office. Your letter is contained in
an envelope (packet). If the letter is too large, it may be
sent in several envelopes (packets). There is no guarantee
that your letter will arrive or that the envelopes will
arrive in the order they were sent. One difference is that
the letter will not arrive in duplicate, whereas a datagram
packet may arrive in duplicate.

Most applications require reliable transmission between
clients and servers. In such cases, it is best to use
stream socket network communication. Some applications that
you write to communicate over the network will not require
the reliable, point-to-point channel provided by TCP. In
such cases, datagram communication is more efficient.

28.10.1 The DatagramPacket and DatagramSocket Classes
The java.net package contains two classes to help you write
Java programs that use datagrams to send and receive
packets over the network: DatagramPacket and

DatagramSocket. An application can send and receive
DatagramPackets through a DatagramSocket.

28.10.1.1 The DatagramPacket Class
The DatagramPacket class represents a datagram packet.
Datagram packets are used to implement a connectionless
packet delivery service. Each message is routed from one
machine to another based solely on information contained
within the packet.

To create a DatagramPacket for delivery from a client, use
the DatagramPacket(byte[] buf, int length, InetAddress
host, int port) constructor. To create all other
DatagramPackets, use the DatagramPacket(byte[] buf, int
length) constructor, as shown in Figure 28.21. Once a
datagram packet is created, you can use the getData and
setData methods to obtain and set data in the packet.

***Same as Fig25.20 in intro6e p851
<PD: UML Class Diagram>

java.net.DatagramPacket
length: int
address: InetAddress

port: int

+DatagramPacket(buf: byte[],

length: int, host: InetAddress, port:
int)

+DatagramPacket(buf: byte[],
length: int)

+getData(): byte[]
+setData(buf: byte[]): void

Specifies the length of the buffer with get and set methods.
Specifies the address of the machine where the packet is sent or received

with get and set methods.
Specifies the port of the machine where the packet is sent or received

with get and set methods.

Constructs a datagram packet in a byte array buf of the specified length
with the host and the port for which the packet is sent. This constructor
is often used to construct a packet for delivery from a client.

Constructs a datagram packet in a byte array buf of the specified length.

Returns the data from the packet.
Sets the data in the packet.

Figure 28.21
The DatagramPacket class contains the data and information
about data.

28.10.1.2 DatagramSocket
The DatagramSocket class represents a socket for sending
and receiving datagram packets. A datagram socket is the
sending or receiving point for a packet delivery service.
Each packet sent or received on a datagram socket is
individually addressed and routed. Multiple packets sent
from one machine to another may be routed differently, and
may arrive in any order.

<Margin note: construct datagram socket>

To create a server DatagramSocket, use the constructor
DatagramSocket(int port), which binds the socket with the
specified port on the local host machine.
To create a client DatagramSocket, use the constructor
DatagramSocket(), which binds the socket with any available
port on the local host machine.

<Margin note: send packet>
To send data, you need to create a packet, fill in the
contents, specify the Internet address and port number for
the receiver, and invoke the send(packet) method on a
DatagramSocket.

<Margin note: receive packet>
To receive data, you have to create an empty packet and
invoke the receive(packet) method on a DatagramSocket.

28.10.3 Datagram Programming
Datagram programming is different from stream socket
programming in the sense that there is no concept of a
ServerSocket for datagrams. Both client and server use
DatagramSocket to send and receive packets, as shown in
Figure 28.22.

***Same as Fig25.21 in intro6e p852

DatagramServer

DatagramSocket socket;
socket = new DatagramSocket(8000);

byte[] buf = new byte[256];

DatagramPacket receivePacket = new

DatagramPacket(buf, bef.length)

socket.receive(receivePacket);

get data from buf or receivePacket.getData();

DatagramPacket sendPacket = new

DatagramPacket(buf, bef.length)

set client’s InetAddree and port into sendPacket;

fill in the contents in buf;
socket.send(sendPacket);

DatagramClient

DatagramSocket socket;
socket = new DatagramSocket();

byte[] buf = new byte[256];

InetAddress address = new

InetAddress(serverName);

DatagramPacket sendPacket = new

DatagramPacket(buf, bef.length, address, 8000)

fill in the contents in buf;
socket.send(sendPacket);

DatagramPacket receivePacket = new

DatagramPacket(buf, bef.length)

socket.receive(receivePacket);

get data from buf or receivePacket.getData();

Figure 28.22
The programs send and receive packets via datagram sockets.

Normally, you designate one application as the server and
create a DatagramSocket with the specified port using the

constructor DatagramSocket(port). A client can create a
DatagramSocket without specifying a port number. The port
number will be dynamically chosen at runtime. When a client
sends a packet to the server, the client’s IP address and
port number are contained in the packet. The server can
retrieve it from the packet and use it to send the packet
back to the client.

To demonstrate, let us rewrite the client and server programs in
Listings 28.1 and 28.2 using datagrams rather than socket streams. The
client sends the radius to a server. The server receives this
information, uses it to find the area, and then sends the area to the
client.

Listing 28.15 gives the server, and Listing 28.16 gives the client. A
sample run of the program is shown in Figure 28.23.

Figure 28.23
The server receives a radius from a client, computes the
area, and sends the area to the client. The server can
serve multiple clients.

Listing 28.15 DatagramServer.java

PD: Please add line numbers in the following code
<Margin note line 19: create UI>
<Margin note line 30: datagram socket>
<Margin note line 34: incoming packet>
<Margin note line 38: outgoing packet>
<Margin note line 46: receive packet>
<Margin note line 59: packet address >
<Margin note line 62: send packet>

import java.io.*;
import java.net.*;
import java.util.*;
import java.awt.*;
import javax.swing.*;

public class DatagramServer extends JFrame {
 // Text area for displaying contents
 private JTextArea jta = new JTextArea();

 // The byte array for sending and receiving datagram packets
 private byte[] buf = new byte[256];

 public static void main(String[] args) {
 new DatagramServer();
 }

 public DatagramServer() {
 // Place text area on the frame
 setLayout(new BorderLayout());
 add(new JScrollPane(jta), BorderLayout.CENTER);

 setTitle("DatagramServer");
 setSize(500, 300);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setVisible(true); // It is necessary to show the frame here!

 try {
 // Create a server socket
 DatagramSocket socket = new DatagramSocket(8000);
 jta.append("Server started at " + new Date() + '\n');

 // Create a packet for receiving data
 DatagramPacket receivePacket =
 new DatagramPacket(buf, buf.length);

 // Create a packet for sending data
 DatagramPacket sendPacket =
 new DatagramPacket(buf, buf.length);

 while (true) {
 // Initialize buffer for each iteration
 Arrays.fill(buf, (byte)0);

 // Receive radius from the client in a packet
 socket.receive(receivePacket);
 jta.append("The client host name is " +
 receivePacket.getAddress().getHostName() +
 " and port number is " + receivePacket.getPort() + '\n');
 jta.append("Radius received from client is " +
 new String(buf).trim() + '\n');

 // Compute area
 double radius = Double.parseDouble(new String(buf).trim());
 double area = radius * radius * Math.PI;
 jta.append("Area is " + area + '\n');

 // Send area to the client in a packet
 sendPacket.setAddress(receivePacket.getAddress());
 sendPacket.setPort(receivePacket.getPort());
 sendPacket.setData(new Double(area).toString().getBytes());
 socket.send(sendPacket);
 }
 }
 catch(IOException ex) {
 ex.printStackTrace();
 }
 }
}

Listing 28.16 DatagramClient.java

PD: Please add line numbers in the following code
<Margin note line 34: create UI>
<Margin note line 54: datagram socket>
<Margin note line 56: outgoing packet>
<Margin note line 58: incoming packet>
<Margin note line 74: send packet>
<Margin note line 77: receive packet >

import java.io.*;

import java.net.*;
import java.util.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class DatagramClient extends JFrame {
 // Text field for receiving radius
 private JTextField jtf = new JTextField();

 // Text area to display contents
 private JTextArea jta = new JTextArea();

 // Datagram socket
 private DatagramSocket socket;

 // The byte array for sending and receiving datagram packets
 private byte[] buf = new byte[256];

 // Server InetAddress
 private InetAddress address;

 // The packet sent to the server
 private DatagramPacket sendPacket;

 // The packet received from the server
 private DatagramPacket receivePacket;

 public static void main(String[] args) {
 new DatagramClient();
 }

 public DatagramClient() {
 // Panel p to hold the label and text field
 JPanel p = new JPanel();
 p.setLayout(new BorderLayout());
 p.add(new JLabel("Enter radius"), BorderLayout.WEST);
 p.add(jtf, BorderLayout.CENTER);
 jtf.setHorizontalAlignment(JTextField.RIGHT);

 setLayout(new BorderLayout());
 add(p, BorderLayout.NORTH);
 add(new JScrollPane(jta), BorderLayout.CENTER);

 jtf.addActionListener(new ButtonListener()); // Register listener

 setTitle("DatagramClient");
 setSize(500, 300);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setVisible(true); // It is necessary to show the frame here!

 try {
 // get a datagram socket
 socket = new DatagramSocket();
 address = InetAddress.getByName("localhost");
 sendPacket =
 new DatagramPacket(buf, buf.length, address, 8000);
 receivePacket = new DatagramPacket(buf, buf.length);
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
 }

 private class ButtonListener implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 try {
 // Initialize buffer for each iteration
 Arrays.fill(buf, (byte)0);

 // send radius to the server in a packet

 sendPacket.setData(jtf.getText().trim().getBytes());
 socket.send(sendPacket);

 // receive area from the server in a packet
 socket.receive(receivePacket);

 // Display to the text area
 jta.append("Radius is " + jtf.getText().trim() + "\n");
 jta.append("Area received from the server is "
 + Double.parseDouble(new String(buf).trim()) + '\n');
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
 }
 }
}

Since datagrams are connectionless, a DatagramPacket can be sent to
multiple clients, and multiple clients can receive a packet from the
same server. As shown in this example, you can launch multiple clients.
Each client sends the radius to the server, and the server sends the
area back to the client.

The server creates a DatagramSocket on port 8000 (line 30 in
DatagramServer.java). No DatagramSocket can be created again on the
same port. The client creates a DatagramSocket on an available port
(line 55 in DatagramClient.java). The port number is dynamically
assigned to the socket. You can launch multiple clients simultaneously,
and each client’s datagram socket will be different.

The client creates a DatagramPacket named sendPacket for delivery to
the server (lines 57-58 in DatagramClient.java). The DatagramPacket
contains the server address and port number. The client creates another
DatagramPacket named receivePacket (line 59), which is used for
receiving packets from the server. This packet does not need to contain
any address or port number.

A user enters a radius in the text field in the client. When the user
presses the Enter key on the text field, the radius value in the text
field is put into the packet and sent to the server (lines 74-75 in
DatagramClient.java). The server receives the packet (line 48 in
DatagramServer.java), extracts the data from the byte array buf, and
computes the area (lines 54-55 in DatagramServer.java). The server then
builds a packet that contains the area value in the buffer, the
client’s address, and the port number, and sends the packet to the
client (lines 60-63). The client receives the packet (line 77 in
DatagramClient.java) and displays the result in the text area.

The data in the packet is stored in a byte array. To send a numerical
value, you need to convert it into a string and then store it in the
array as bytes, using the getBytes() method in the String class (line
60 in DatagramServer.java and line 72 in DatagramClient.java). To
convert the array into a number, first convert it into a string, and
then convert it into a number using the static parseDouble method in
the Double class (line 53 in DatagramServer.java and line 81 in
DatagramClient.java).

NOTE: The port numbers for the stream socket
and the datagram socket are not related. You

can use the same port number for a stream
socket and a datagram socket simultaneously.

