
C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

Supplement VI.C: XML
For Introduction to Java Programming

By Y. Daniel Liang

This supplement covers the following topics:

• Creating XML Documents
• Creating DTD
• XPath
• XSLT
• Oracle XSQL

12.1 Introduction
XML, eXtensible Markup Language, has become an Internet
standard for data exchange on the Web. XML is similar to
HTML in the sense that both are markup languages that
annotates text. They both use the tags to describe
documents. They are, however, very different in many ways.
HTML is to describe the documents for display by Web
browsers. It tells the Web browser how to render the
documents visually. XML is for describing the contents of
the data and their structural relationships. It is intended
for use by programs to share and exchange data. XML is
interoperable with HTML and can be transformed into HTML for
display on Web browsers.

NOTE: Basic knowledge of HTML is required for
this chapter. To learn HTML, please read
Appendix VI.A, “HTML Tutorial.”

Two main advantages of using XML are the following:

• XML is a metalanguage that enables it to describe
itself and create its own tags. So XML is flexible
and can create descriptive contents.

• XML is a text that enables it to be portable on all

platforms. So XML data contents can be easily shared
and exchanged on the Web.

In this chapter, you will learn how to describe data using
XML, how to define XML documents using the document type
definitions, how to transform XML into other documents using
XSLT, and how to utilize XML to format and display query
results and process database operations in Oracle.

1

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

12.2 Creating XML Documents
Let us begin with a simple example that demonstrates how to
write an XML document, as shown in Listing 12.1.

Listing 12.1: Listing12_1.xml
PD: Please add line numbers in the following code

<?xml version = "1.0"?>

<!-- XML document for students -->

<students>

 <student num = "1">

 <ssn>444111110</ssn>

 <firstname>Jacob</firstname>

 <mi>R</mi>

 <lastname>Smith</lastname>

 <birthdate>4/9/1985</birthdate>

 <phone>9129219434</phone>

 <street>99 Kingston Street</street>

 <zipcode>31435</zipcode>

 </student>

 <student num = "2">

 <ssn>444111111</ssn>

 <firstname>John</firstname>

 <mi>K</mi>

 <lastname>Stevenson</lastname>

 <birthdate>4/9/1985</birthdate>

 <phone>9129219434</phone>

 <street>100 Main Street</street>

 <zipcode>31411</zipcode>

 </student>

</students>

As you see, the document is self-explanatory. It describes
two students. The first line declares that it is an XML
document. The second line is a comment. The students are
contained in the tags <students> and </students>. The ssn,
first name, mi, last name, birth date, street, and zip code
of each student are described in the document.

The document can be stored as a text file with extension
.xml by convention. The document itself contains data. You
can use a program to process the data and display data in
desired format. You will learn how to format the data for
display in Section 12.4, “XML Stylesheet.” Internet Explorer
has a built-in tool to parse and display XML documents. If
an XML document is syntactically correct, Internet Explorer
displays it in the form of a hierarchical indexed list. The
expand symbol in front of an item indicates that it contains
subitems. You can see the subitems by clicking on the expand

2

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

symbol (+). Assume Listing 12.1 is stored in the file named
listing12_1.xml. Figure 12.1 shows that student.xml is
displayed in Internet Explorer.

Figure 12.1

Internet Explorer can parse and display XML documents.

The following sections examine the syntax of XML using the
preceding document in Listing 12.1 as example.

12.2.1 Declaration

Line 1 is an XML declaration to state that the document
conforms to the XML version 1.0. The declaration is
optional, but it is a good practice to use it. Otherwise, a
document without the declaration may be assumed of a
different version, which may lead to errors.

If an XML declaration is present, it must be the first item
to appear in the document. This is because an XML processor
looks for the first line to obtain information about the
document so that it can be processed correctly.

12.2.2 Comments

Line 2 is a comment intended to make the XML source text
easier to understand. XML comment always begins with <!--
and end with -->. Comments cannot be inside another comment.
For example, the following is wrong:

3

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

<!-- comment 1 <-- comment 2 --> -->

12.2.3 Tags

XML tags are used to describe the contents of the XML
document. You can create your own tags. In the preceding
example, students, student, ssn, firstname, mi, lastname,
birthdate, street, and zipcode are the tags to describe
students, student, ssn, fistName, mi, lastName, birthDate,
and street. Obviously, you should choose descriptive names
for the tags so that they can be easily understood.

Each tag in XML must be used in a pair of the starting tag
and the closing tag. A starting begins with < followed by
the tag name, and ends with >. A closing tag is the same as
its starting except it begins with </. For example,
<students> is a starting tag and </students> is a closing
tag.

NOTE: The XML tag names are case-sensitive,
whereas HTML tags are not. So, <students> is
different from <students> in XML. Every starting
tag in XML must have a matching closing tag,
whereas some tags in HTML does not need closing
tags.

12.2.4 Elements, the Root Element, and Leaf Elements

<side remark: root element>
<side remark: leaf element>
An XML document consists of elements described by tags. An
element is enclosed between a starting tag and a closing
tag. XML elements are organized in a tree-like hierarchy.
Elements may contain subelements, but there is only one root
element in an XML document. All the elements must be
enclosed inside the root tag. For example, students is a
root tag and all elements in the document are enclosed
inside <students> and </students>. If an element does not
contain other elements, it is called a leaf element.

12.2.5 Empty Elements

XML allows you to use empty elements as placeholders in the
document. The syntax for an empty element is <tagName />.
Listing 12.2 gives an example with empty elements.

4

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

Listing 12.2: Listing12_2.xml
PD: Please add line numbers in the following code

<?xml version = '1.0'?>

<!-- Use empty elements -->

<examples>

 <source />

 <example>

 An example here;

 </example>

</examples>

12.2.6 Attributes

Attributes provide additional information to describe
elements. For example, the num attribute in Line 4 in Listin
12.1

<student num="1">

indicates that this is the first student in the student
list.

12.2.7 Special Characters and Unicodes

The characters <, >, ", ', and & have special meanings in
XML. For example, angle brackets are reserved for delimiting
tags. To use these characters in the content of an element
or attribute, you must use entity references, which begin
with an ampersand (&) and end with a semicolon (;). The
entity references for these characters are as follows:

• Less than sign (<) uses <.
• Greater than sign (>) uses >.
• Ampersand (&) uses &.
• Single quote or apostrophe (’) uses '.
• Double quotation mark (") uses ".

You can also represent the Unicode characters in XML using
the entity reference notation like &#abcd;, where abcd
represents a four-hex digit Unicode character.

NOTE: The semicolon (;) at the end of the
special characters and Unicode characters are
required.

Listing 12.3 gives an example of using special characters
and Unicodes in XML. It is displayed in Internet Explorer,
as shown in Figure 12.2.

5

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

6

Listing 12.3: Listing12_3.xml
PD: Please add line numbers in the following code

<?xml version = '1.0'?>

<!-- Use Special Characters and Unicode Characters -->

<examples>

 <example num="1">

 < > & ' "

 </example>

 <example num="2">

 Ä Ö Ü ß

 ä ö ü

 </example>

 <example num="3">

 α β γ δ

 ε ζ η

 </example>

</examples>

Figure 12.2

You can use special characters and Unicode in XML documents.

12.2.8 CDATA Sections

Suppose you need to write an XML document that contains a
lot of special characters in the content. You would have to
use a lot of entity references, which makes the document
difficult to read. To avoid it, you can use the XML CDATA
sections to contain the elements with the special characters
without using the entity references. To use the CDATA
section, enclose the element between <![CDATA[and]]>.

Listing 12.4 gives an example of using the CDATA sections.

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

The document is displayed in Internet Explorer, as shown in
Figure 12.3.

Listing 12.4: Listing12_4.xml
PD: Please add line numbers in the following code

<?xml version = '1.0'?>
<!-- Use CDATA -->

<examples>

 <myxmldoc>

 <![CDATA[

 1 < 2 < 3 < 4 < 5 and 5 >= 5

]]>

 </myxmldoc>

</examples>

Figure 12.3

You can use the CDATA section to contain the elements with
special characters.

12.2.9 Well-Formed XML Documents

An XML document is said to be well-formed if it is
syntactically correct. The XML parser reads the XML
document, checks its syntax, reports errors if any. The
Internet Explorer has a built-in parser. When you display an
XML document in Internet Explorer, the parser is invoked to
check the document syntax. If the document is well-formed,
it is displayed. Otherwise, Internet Explorer reports
errors. For example, if you mistyped <students> to
<students> in Listing 12.1, an error is displayed, as shown
in Figure 12.4.

7

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

Figure 12.4

The XML parser checks if the document is well-formed.

12.3 Document Type Definition (Optional)

A document type definition (DTD) defines the types of
elements and the order that can appear in the XML document.
An XML document is not required to have a corresponding DTD,
but a DTD can be used to ensure the documents of the same
type conform to the same rules. This is particularly
important when the XML documents are used in B2B (Business-
to-business) and B2C (Business to customer) transactions.
Listing 12.5 gives a simple example of DTD.

Listing 12.5: student.dtd
PD: Please add line numbers in the following code

<!DOCTYPE students [

 <!ELEMENT student (ssn, firstName, mi, lastname, birthdate,

 phone, street, zipcode)>

 <!ELEMENT ssn (#PCDATA)>

 <!ELEMENT firstName (#PCDATA)>

 <!ELEMENT mi (#PCDATA)>

 <!ELEMENT lastname (#PCDATA)>

 <!ELEMENT birthdate (#PCDATA)>

 <!ELEMENT phone (#PCDATA)>

 <!ELEMENT street (#PCDATA)>

 <!ELEMENT zipcode (#PCDATA)>

 <!ELEMENT students (student+)>

]>

Line 2 declares that the student element consists of
subelements ssn, firstName, lastname, phone, street, and
zipcode in this order. Line 4 declares that the ssn element
is #PCDATA (parsable character data). Similarly, firstName,

8

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

lastname, phone, street, and zipcode are declared as #PCDATA
in Lines 4-8. The last line declares that the students
element consists one or more student elements.

The following sections introduce DTD in more details.

12.3.1 Element Type Declarations

You must declare every element you intend to use in a DTD.
The general syntax to declare an element is:

<!ELEMENT elementName (elementDescription)>

This line declares the contents of the elementName in
elementDescription.

12.3.1.1 PCDATA

You can describe the contents as parsable characters using
PCDATA. For example, the following line declares that the
ssn element consists of parsable characters. Parsable
characters does not contain XML special characters like <,
>, &, ", and '.

<!ELEMENT ssn (#PCDATA)>

12.3.1.2 The Order of Elements

DTD allows you to use a comma (,) to specify the order of
sub-elements for a parent element. For example, the
following line declares that the student element consists of
exactly ssn, firstName, mi, lastname, phone, street, and
zipcode in this sequence.

<!ELEMENT student (ssn, firstName, mi, lastname, phone, street, zipcode)>

12.3.1.3 The Selection of Elements

DTD allows you to use a vertical bar (|) to specify the
selection of sub-elements for a parent element. For example,
the following line declares that the employee element is
either faculty or staff, but not both.

<!ELEMENT employee (faculty | staff)>

12.3.1.4 Repetitions of Elements

DTD allows you to specify how many times an element may
appear using the characters +, *, or ?. The plus sign (+)

9

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

indicates that the element can appear one or more times. The
asterisk sign (*) indicates that the element can appear zero
or more times. The question mark (?) indicates that the
element can appear zero or one time.

For example, the following line declares that the department
element contains one chair element, one or more student
elements, zero or more faculty elements, zero or one staff
element, and zero or one technician element.

<!ELEMENT department (chair, student+, faculty*, (staff, technician)?)>

NOTE: The elements can be grouped. In the
preceding declaration, staff and technician are
grouped.

12.3.1.5 EMPTY Elements

DTD allows you to specify an empty element using the keyword
EMPTY. For example, the following line declares that the cup
element is empty.

<!ELEMENT cup EMPTY>

12.3.1.6 ANY Elements

When developing a DTD in the early stage, sometime you don’t
have the exact definition in place; you can use the ANY
keyword to specify that an empty element can contain any
content. Later you should replace the ANY keyword with the
exact definition. For example, the following line declares
that the employee element can have any content.

<!ELEMENT employee ANY>

12.3.2 Internal and External DTD

How do you associate an XML document with a specified DTD?
There are two ways: internal DTD and external DTD. An
internal DTD is combined with an XML document in one file.
An external DTD is placed in a separate file.

12.3.2.1 Internal DTD

An XML with an internal DTD has the following syntax:

<?xml version = '1.0'?>

<!DOCTYPE rootElement [

 <!-- Place DTD here -->

10

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

]>

<rootElement>

 <!-- Describe elements -->

</rootElement>

An example of an XML with an internal DTD is shown in
Listing 12.6.

Listing 12.6: Listing12_6.xml

PD: Please add line numbers in the following code

<?xml version = '1.0'?>

<!DOCTYPE students [

 <!ELEMENT student (ssn, firstName, mi, lastname, birthdate,

 phone, street, zipcode)>

 <!ELEMENT ssn (#PCDATA)>

 <!ELEMENT firstName (#PCDATA)>

 <!ELEMENT mi (#PCDATA)>

 <!ELEMENT lastname (#PCDATA)>

 <!ELEMENT birthdate (#PCDATA)>

 <!ELEMENT phone (#PCDATA)>

 <!ELEMENT street (#PCDATA)>

 <!ELEMENT zipcode (#PCDATA)>

 <!ELEMENT students (student+)>

]>

<students>

 <student>

 <ssn>444111110</ssn>

 <firstname>Jacob</firstname>

 <mi>R</mi>

 <lastname>Smith</lastname>

 <birthdate>4/9/1985</birthdate>

 <phone>9129219434</phone>

 <street>99 Kingston Street</street>

 <zipcode>31435</zipcode>

 </student>

 <student>

 <ssn>444111111</ssn>

 <firstname>John</firstname>

 <mi>K</mi>

 <lastname>Stevenson</lastname>

 <birthdate>4/9/1985</birthdate>

 <phone>9129219434</phone>

 <street>100 Main Street</street>

 <zipcode>31411</zipcode>

 </student>

</students>

11

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

12

12.3.2.1 External DTD

An internal DTD is used only once in an XML document. An
external DTD can be shared by many XML documents. Suppose
you have stored Listing 12.5 as an external DTD in the file
named student.dtd. Instead of including the entire DTD in
the XML file, you can use the following syntax to reference
the external DTD:

<!DOCTYPE rootElement SYSTEM "student.dtd"> or

<!DOCTYPE rootElement PUBLIC "student.dtd">

The keyword SYSTEM and PUBLIC indicate that an external DTD
is used. SYSTEM is used to indicate a DTD is located on the
local machine and restricted to a user or a group of users,
and PUBLIC indicates that the external DTD can be accessed
by the public. Often you use PUBLIC to access an external
DTD from a Website as shown in the following example:

<!DOCTYPE students PUBLIC

 "http://www.cs.armstrong.edu/liang/intro6e/book/student.dtd">

12.3.3 Validating XML Documents

You can use a software, called XML DTD validator, to
validate whether an XML document conforms to its DTD. Many
validators are available free. Some XML parsers have the
capabilities to validate DTD. Such XML parsers are known as
validating parsers. The parser in Internet Explorer,
however, is nonvalidating. You can use Microsoft FrontPage
to edit and validate XML documents, as shown in Figure 12.5.

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

Figure 12.5

You can use Microsoft FrontPage to edit and validate XML
documents.

NOTE: By definition, a valid XML document is
also well-formed, but a well-formed document may
not be valid.

12.3.4 Entities

You have learned to use the entity references for the five
special characters (<, >, ", ', and &) in XML. You can
define your own entity references using the <!ENTITY> tag.

12.3.4.1 Internal Entities

You can define entity references inside a DTD as shortcuts.
For example, Listing 12.7 defines two shortcuts for

13

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

“Computer Science” and “Mathematics.” CS is defined as an
entity reference for Computer Science, and MATH is for
Mathematics. The entity are referenced using the notation
&CS; and &MATH; in the XML document. The parser replaces the
entity reference with the actual value. Listing 12.7 is
displayed as shown in Figure 12.6.

Listing 12.7: Listing12_7.xml

PD: Please add line numbers in the following code

<?xml version = '1.0'?>
<!DOCTYPE school [
 <!ELEMENT school (department+)>
 <!ELEMENT department (#PCDATA)>
 <!ENTITY CS "Computer Science">
 <!ENTITY MATH "Mathematics">
]>
<school>
 <department>
 &CS;
 </department>
 <department>
 &MATH;
 </department>
</school>

Figure 12.6

The entity references are replaced by the entity value in
the browser.

NOTE: In Listing 12.7, entities are defined
inside a DTD within an XML document. The entity
can only be referenced in the XML document. You
can store the DTD externally so that the entity
definitions can be shared by other XML
documents.

14

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

15

12.3.4.2 External Entities

You can declare an entity reference for a whole document
stored in a separate file. For example, Listing 12.8
declares myStudent to reference the document Student.xml.
Student.xml was given in Listing 12.1. The entity is
referenced using the notation &myStudents; in the XML
document. The parser replaces the entity reference with the
external document. Listing 12.8 is displayed as shown in
Figure 12.7.

Listing 12.8: Listing12_8.xml

PD: Please add line numbers in the following code

<?xml version = '1.0'?>
<!DOCTYPE school [
 <!ELEMENT school (department+)>
 <!ELEMENT department (#PCDATA)>
 <!ENTITY CS "Computer Science">
 <!ENTITY MATH "Mathematics">
 <!ENTITY myStudents SYSTEM "Student.xml">
]>
<school>
 &myStudents;
 <department>
 &CS;
 </department>
 <department>
 &MATH;
 </department>
</school>

Figure 12.7

The entity references are replaced by the external document
in the browser.

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

16

12.3.4.3 Unparsed Entities

Not all data exist in XML format. To incorporate non-XML
data into your XML document, you can use unparsed entities.
For example, the following declaration specifies that the
external data is non-XML.

<!ENTITY nonXMLEntity SYSTEM "description.html" NDATA html>

The keyword NDATA indicates that the content of the external
file is non-XML.

XML does not recognize any non-XML format. For the HTML
files to be recognized as an external file, you have to
declare it using the <!NOTATION> tag as follows:

<!NOTATION html SYSTEM "iexplorer">

This syntax declares that html files can be unparsed and the
program that handles html files is IExplorer.

12.3.5 Attribute Declarations

You learned how to write DTD that declares elements. An XML
document may also contain attributes. For example, num in
the following line is an attribute.

<student num="1">

Attributes are subject to DTD rules. You must declare every
attribute you intend to use in a DTD. The general syntax to
declare an element is:

<!ATTLIST elementName attributeName dataType defaultValue>

The elementName is the name for which the attribute is to be
used. The attributeName is the name of the declared
attribute. The dataType defines the data type for the
attribute.

12.3.5.1 Attribute Defaults

DTD allows you to specify default values for attributes
using the keywords #REUQIRED, #IMPLIED, and #FIXED.
#REUQIRED indicates that the attribute must appear in the
element. The document is invalid if a required attribute is
missing. #IMPLIED indicates that the attribute is optional
in the element. #FIXED specifies that the attribute value is
fixed in the element, which means any two values of the same

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

fixed attribute must be same in the element.

12.3.5.2 CDATA Attributes

CDATA declares that attribute can contain any character
except the special characters <, >, ", ', and &.

12.3.5.3 NMTOKEN and NMTOKENS Attributes

NMTOKEN is the same as CDATA except that an NMTOEN value
must start with a letter or an underscore. NMTOKENS can be
used to specify values separated by spaces.

12.3.5.4 ID, IDREF, and IDREFS Attributes

ID can be used to specify that the attribute value is unique
for the element in the document. IDREF and IDREFS point to
the element(s) with a given ID attribute value, which is
already given in the document. IDREF and IDREFS provide a
link between elements through XML tree structure. For
example, Listing 12.9 shows an XML with the DTD that uses
the attributes ID, IDREF and IDREFS.

Listing 12.9: Listing12_9.xml

PD: Please add line numbers in the following code

<?xml version = '1.0'?>

<!DOCTYPE teaching [

 <!ELEMENT teaching (faculty, course+)>

 <!ELEMENT faculty (#PCDATA)>

 <!ATTLIST faculty facultyID ID #REQUIRED>

 <!ATTLIST faculty X CDATA #IMPLIED>

 <!ELEMENT course (#PCDATA)>

 <!ATTLIST course taughtby CDATA #IMPLIED>

]>

<teaching>

 <faculty facultyID = "F1">

 Steve Jones

 </faculty>

 <course taughtby = "F1">

 Database Systems

 </course>

</teaching>

In Listing 12.9, facultyID is unique. If you add another
faculty element with the same facultyID, the document is not
valid.

17

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

NOTE: Since ID attribute value is unique for the
elements, you cannot declare ID as #FIXED.

12.3.5.5 ENTITY and ENTITIES Attributes

ENTITY can be used to specify that the attribute value is an
unparsed entity or entities. For example,

<!ENTITY myText "This is my text">

declares that myText is an entity reference for "This is my
text." This entity might be used as follows:

<newText>&myText</newText>

The ENTITIES type can be used to indicate that an attribute
may have multiple entities for its value. For example

<!ENTITY department DOCUMNET ENTITIES>

specifies that DOCUMENT attribute contains multiple
entities. An XML markup that conforms to this might look
like this:

<department DOCUMENT = "Doc1 Doc2 Doc3">

12.4 XSLT

A key advantage of using XML is that its presentation can be
separate from its content. An XML document can be formatted
using a stylesheet. The stylesheet defines how an XML
document is presented. The same XML document can be
presented in many ways using different stylesheets. The
program that translates an XML using a stylesheet is known
as an XSLT(eXtensible Stylesheet Translation) processor, as
shown in Figure 12.8.

18

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

<?xml version = '1.0'?>
<?xml:stylesheet type = "text/xsl"
 href = "book.xsl"?>
<book>
 <title>Java Programming</title>
 <author>Y. Daniel Liang</author>
</book>

XML Source: book.xml

XSLT
Processor

<?xml version = "1.0"?>
<xsl:stylesheet version = "1.0"
 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
 <xsl:template match = "book">
 <html>
 <h1><xsl:value-of select = "title"/></h1>
 <h2><xsl:value-of select = "author"/></h2>
 </html>
 </xsl:template>
</xsl:stylesheet>

XSL Source: book.xsl

<html>
 <h1>DB with Java and Oracle </h1>
 <h2> Y. Daniel Liang </h2>
 </html>

Output

 Figure 12.8

The XSLT processor translates the original XML document into
a new XML document.

To attach a stylesheet to an XML document, use the
stylesheet declaration in the XML document:

<?xml:stylesheet type = "text/xsl" href = "book.xsl"?>

The type attribute specifies the stylesheet type. There are
two types: XSL and CSS (Cascading Stylesheet). Cascading
stylesheet originates from HTML. You can use cascading
stylesheet in both HTML and XML. For information on CSS,
please see Supplement IV.B. The href attribute points to the
stylesheet file.

Let us look at the XSL source in Figure 12.8. An XSL
stylesheet itself is an XML document. The name space
http://www.w3.org/1999/XSL/Transform is required to identify
the XSL elements in the stylesheet. All the XSL tags begin
with prefix xsl. The root element for an XSL document is
always xsl:stylesheet. The <xsl:template match = "book">
element contains the processing instructions for translating
the XML source for the book element. The <xsl:value-of
select = "title"/> element returns the value of the title
element under the book element. Similarly, The <xsl:value-of
select = "author"/> element returns the value of the author

19

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

element in the book element. So, it generates the output as
shown in Figure 12.8. You will learn in details how to write
the XSL stylesheet and how the translation is processed in
following sections.

NOTE: Internet Explorer contains an XSLT
processor, which translates the XML source to
another XML document using the stylesheet. If
the output is HTML, it renders it using the
Internet Explorer HTML processor, as shown in
Figure 12.9.

Figure 12.9

Internet Explorer translates the XML document and renders
the HTML content in the browser.

12.4.1 The Stylesheet Structure
In general, a stylesheet has the following syntax:
<?xml version = "1.0"?>

<xsl:stylesheet version = "1.0"

 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">

 <xsl:template match = pattern1>

 [actions1]

 </xsl:template>

 <xsl:template match = pattern2>

 [actions2]

 </xsl:template>

 ...

</xsl:stylesheet>

A stylesheet consists of templates. Each template has its
matching pattern specified using XPath expression. XPath is
introduced in the next section. For the element(s) in the
XML source document that match the pattern, actions are used
to produce the output.

12.4.2 The XPath Tree

20

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

Before you learn how to write XSL stylesheets, you need to
know the XPath tree, which conceptually models the
underlying structure for the XML document. When the XML
parser processes an XML document, it creates an XPath tree
for the document. All the components in an XML are
represented as nodes to mirror the structural relationships
of the components in the XML document. Figure 12.10 shows
the XPath tree of the XML document in Listing 12.1.

student

students

ssn firstname zipcode

student

ssn firstname … zipcode

Text for
ssn

Text for
firstname

Text for
zipcode

Text for
ssn

Text for
firstname

Text for
 zipcode

root

Attribute
num = "1"

Attribute
num = "2"

Comment
XML document for students

…

Figure 12.10

The XML parser parses an XML document into an XPath tree.

An XPath tree has seven types of nodes: root, element,
attribute, text, comment, processing instruction and name
space. There is only one root node that contains all the
components in an XML document. Each element, attribute,
comment, text, processing instruction, and name space in an
XML document corresponds to a node in an XPath tree. XPath
trees are usually generated by an XML parser if the XML
document is well-formed.

NOTE: The order of the nodes in an XPath tree
mirrors the order of their corresponding
components in the XML document. For example, If
element A is a subelement of B in the XML
document, the node for A is a child node of the
node for B. If element A appears before element
B in the XML document, then the node for A is on
the left side of the node for B in the XPath
tree.

XSLT processor uses an XPath tree to traverse and locate

21

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

components in order to match the pattern for templates. Once
a node in the tree is found to match the pattern, the
corresponding element in the XML is processed using the
actions specified for the pattern in the XML stylesheet.

A pattern is expressed using a location path, which is an
expression that specifies how to locate a node or nodes. It
has the following syntax:

axis::nodeset[predicate]

In most cases, axis and predicate are omitted.

12.4.2.1 Axis

The nodes in the XPath are traversed in some order. The
current node being visited is called the “context node.” An
axis indicates which direction to traverse from the context
node. Table 12.1 lists the axes.

Table 12.1: XPath Axes

Axis Name

child
parent
descendant
ancestor
attribute
namespace
following

following-sibling
preceding
preceding-sibling
self
descendant-or-self
ancestor-or-self

Direction

Forward
Backward
Forward
Backward
Forward
Forward
Forward

Forward
Backward
Backward
None
Forward
Backward

Description

The context node’s children backward
The context node’s parent backward
The context node’s descendants
The context node’s ancestor
The context node’s attribute
The context node’s namespace
The nodes in the XML document following the

context node, not including descendants
The sibling nodes following the context node
The nodes in the XML document preceding the

context node, not including ancestors
The context node itself
The context node’s descendant and also itself
The context node’s ancestor and also itself

NOTE: An axis has a principal node type that
corresponds to the nodes in the axis. All the
axes have the element principal node type,
except the attribute axes and namespace axes.

12.4.2.2 Node Set Test

An axis selects a set of nodes from the XPath tree. You can
narrow the selection based on the types of the nodes. Table
12.2 lists node set tests.

22

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

Table 12.2: Node Set Test

Node Set Test

*
node()
text()
comment()
processing-instruction()
nodename

Description

Selects all nodes of the same principal node type.
Selects all nodes, regardless of their type.
Selects all text nodes.
Selects all comment nodes.
Selects all processing-instruction nodes.
Selects all nodes with the specified name.

The location path in the following template specifies a
pattern child::*, which matches all the non-attribute and
non-namespace child nodes of the current context, since the
child axis is of the element principal node type.

<?xsl:template match = "child::*">
 [actions]
</xsl:template>

The child axis can be omitted. So child::* is equivalent to
*.

The location path

child::comment()

selects all text child nodes.

<side remark: Node Set Operator>
XPath provides the | (the pipe character) operator to
perform the union of two nodes sets, and the / operator to
specify location steps. It also provides the shorthand
operators //, @, ., and .. to simplify notations. The //
operator is the same as /descendant-or-self::node()/ , the @
operator is the same as attribut::, and the . operator is
same as self::node(), and the .. operator is the same as
parent::node(). Table 12.3 summarizes these operators.

Table 12.3: Node Set Operators

Node Set Operator

|
/
//
@
.
..

Description

Performs union of two node sets.
Separates location paths.
Same as /descendant-or-self::node()/
Same as attribut::
Same as self::node()
Same as parent::node()

For example,

23

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

"student/firstName | student/lastname"

specifies the node set firstName and lastname of a student
node.

"*/firstName" specifies all firstName at the child level of
the current node.

"student/*" specifies any child element of a student node.

"students//*" specifies any descendants of students.

NOTE: Use the slash character alone means the
root element in the tree.

12.4.2.3 Predicate

An axis selects a set of nodes from the XPath tree. The node
set test narrows the selection. You can use the predicate to
further narrow the selection. For example, there are two
student nodes in the XPath tree in Figure 12.10. These two
nodes would match the following template:

 <xsl:template match = "child::student">

 [actions1]

 </xsl:template>

If you want only the first student node to match the
template, you could apply a restriction on the attribute
using a predicate as follows:

 <xsl:template match =

 "child::student[attribute::num = '1']">

 [actions1]

 </xsl:template>

The predicate attribute::num = '1' specifies that attribute
num of the student element is 1. As you see, the predicate
provides an additional restriction on the node set. A
predicate is a Boolean expression that results in true or
false. You can use the relational operators in Table 12.4 in
the predicates.

Table 12.4: Operators in Predicates

Operator Description

24

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

= equal
!= not equal
< less than
> greater than
<= less than or equal to
>= greater than or equal to

You can also use node-set functions in Table 12.5 and string
functions in Table 12.6 in the predicates. For example,

child::student[position() = 2]

specifies the second student element. This expression can be
shorted as simply

child::student[2]

Table 12.5: Node-Set Functions

Node Set Function

count(node-set)
position()

last()

id(string)

Description

Returns the number of nodes in the specified node-set.
Returns the position number of the current node in the

selected node set.
Returns the position number of last node in the current

node set.
Returns the element node whose ID attribute matches

the value specified by argument string.

Table 12.6: String Functions

String Function

concat(str1, str2, ..., strn)
starts-with(str1, str2)
contains(str1, str2)
string-length(str)

Description

Concatenates various strings into one.
Returns true if str1 starts with str2.
Returns true if str1 contains str2.
Returns the number of characters in the string.

12.4.3 How Does an XSLT Processor Work?
The XSLT processor processes the XML document by applying
the template actions on the nodes in the XPath tree. The
nodes of the element, text, comment, and processing types
are traversed in depth-first order. For example, the nodes
in Figure 12.11 are traversed as follows: A, B, D, I, J, K,
E, F, L, C, G, H, M, N, O.

25

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

A

B

D

I J

E F

C

G H

K L M N O

Figure 12.11

The nodes in the XPath tree are traversed in depth-first
order for processing by the XSLT processor.

For each node traversed, the XSLT checks if the node matches
a pattern in the stylesheet. If a matching pattern is found,
the actions for the pattern are processed and the
descendants of this node are skipped (not traversed). If a
text node is traversed, the text is output to the result.

NOTE: Only the nodes of the element, text,
comment, and processing types are processed. The
attribute nodes and namespace nodes are ignored.

Let’s demonstrate the process using Figure 12.12. The XML
parser parses the XML document to generate the XPath tree.
The XSLT processor traverses the root first. Since there is
no match for the root, it traverses the text node, so the
text “begin” is sent to the output. The node title is
traversed, since there is no match for this node, its child
text node is traversed, the text “Java Programming” is sent
to the output. The author node is traversed. Since there is
no match for this node, its child text node is traversed,
the text “Y. Daniel Liang” is sent to the output. The
chapter node is traversed. It matches the patter in the
template, the action for the pattern is processed and the
text “Chapter output” is sent to the output. Finally, the
text “end” is sent to the output.

26

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

<?xml version = '1.0'?>
<?xml:stylesheet type = "text/xsl"
 href = "test.xsl"?>
<book>
 begin
 <title>DB with Java and Oracle</title>
 <author>Y. Daniel Liang</author>
 <chapter num = "1">
 <section>Section 1.1 </section>
 </chapter>
 end
</book>

XML Source: test.xml

XSLT
Processor

<?xml version = "1.0"?>
<xsl:stylesheet version = "1.0"
 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
 <xsl:template match = "chapter">
 Chapter output
 </xsl:template>
</xsl:stylesheet>

XSL Source: test.sql

begin
Java Programming
Y. Daniel Liang
Chapter output
end

Output
book

begin title author chapter end

Java Programming

Y. Daniel Liang

Section 1.1

section

XML
Parser

root

 Figure 12.12

The XSLT processor uses the XPath tree and templates to
translate XML documents.

12.4.3.1 Resolving Conflict

What happens if a node matches two or more patterns in the
stylesheet? In theory, it is not allowed. The XSLT processor
should report an error in the stylesheet. However, Internet
Explorer does not report any error. Internet Explorer
resolves the conflict by applying the last template that
matches the node in the stylesheet. For example, actions2 is
used to process the ssn node in the XML document in Listing
12.1 if the following stylesheet is used:

 <xsl:template match = "student/ssn">
 [action1]
 </xsl:template>

 <xsl:template match = "student/ssn">
 [action2]
 </xsl:template>

27

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

12.4.4 Actions
Once a node matches a pattern, the XSLT processor performs
the actions in the template to process the node. This
section introduces the syntax for actions.

12.4.4.1 The <xsl:apply-templates> Tag

The <xsl:apply-templates select = "nodeset"> tag tells the
XSLT processor to process the selected nodeset. <xsl:apply-
templates/> is an empty tag, which processes the current
node. For example, Figure 12.13 shows the effect of adding
this tag in test.xsl.

<?xml version = '1.0'?>
<?xml:stylesheet type = "text/xsl"
 href = "test.xsl"?>
<book>
 begin
 <title>Java Programming</title>
 <author>Y. Daniel Liang</author>
 <chapter num = "1">
 <section>Section 1.1 </section>
 </chapter>
 end
</book>

XML Source: test.xml

XSLT
Processor

<?xml version = "1.0"?>
<xsl:stylesheet version = "1.0"
 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
 <xsl:template match = "chapter">
 <xsl:apply-templates/>
 Chapter output
 </xsl:template>
</xsl:stylesheet>

XSL Source: test.sql

begin
Java Programming
Y. Daniel Liang
Section 1.1
Chapter output
end

Output
book

begin title author chapter end

Java Programming

Y. Daniel Liang

Section 1.1

section

XML
Parser

 Figure 12.13

The <xsl:apply-templates/> tag is for processing the current
node and its descendants.

12.4.4.2 The <xsl:text> Tag

The <xsl:text> tag is used to enter text string. This tag
can be omitted. For example, the following two stylesheets
in Figure 12.14 are equivalent.

28

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

<?xml version = "1.0"?>
<xsl:stylesheet version = "1.0"
 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
 <xsl:template match = "chapter">
 Chapter output
 </xsl:template>
</xsl:stylesheet>

<?xml version = "1.0"?>
<xsl:stylesheet version = "1.0"
 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
 <xsl:template match = "chapter">
 <xsl:text>Chapter output</xsl:text>
 </xsl:template>
</xsl:stylesheet>

Figure 12.14

The <xsl:text> tag can be omitted for entering text strings.

12.4.4.3 The <xsl:value-of select = exp/> Tag

The <xsl:value-of select = exp/> tag is for selecting a text
and attribute value from the specified XPath expression in
the XML source. For example,

<xsl:value-of select = "SECTION"/>

selects the text in the SECTION element.

<xsl:value-of select = "@NUM"/>

selects the value the NUM attribute.

12.4.4.4 The <xsl:if test = "condition"> Tag

The <xsl:if = condition> tag has the following syntax:

<xsl:if = condition>

 [actions]

</xsl:if>

It checks the condition. If true, perform the actions.

The condition is an XPath predicate. For example, the
condition @NUM = 2 in following template checks is whether
the NUM attribute for the student node is 2. If so, select
the text values of the ssn, firstName, and lastname nodes.

 <xsl:template match = "student">

 <xsl:if test = "@NUM = '2'">

 <xsl:value-of select = "ssn"/>

 <xsl:value-of select = "firstName"/>

 <xsl:value-of select = "lastname"/>

 </xsl:if>

29

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

 </xsl:template>

12.4.4.5 The <xsl:choose> Tag

The <xsl:choose> tag has the following syntax:

<xsl:choose>

 <xsl:when test = "condition1">action1</xsl:when>

 <xsl:when test = "condition2">action2</xsl:when>

 ...

 <xsl:otherwise>otheraction</xsl:otherwise>

</xsl:choose>

It tests multiple conditions in the order specified in the
<xsl:choose> element. If a condition is true, its
corresponding action is performed and the rest of the
conditions are skipped. The <xsl:choose> tag, which is
optional, covers all the cases not specified in the
<xsl:when> tags.

For example, the following <xsl:choose> tag tests whether
the NUM attribute of the student node is 1 or 2. If it is 1,
select the text value of the firstname node of the student
node. If it is 2, select the text value of the lastname node
of the student node. Otherwise, output the text No Match.

 <xsl:template match = "student">

 <xsl:choose>

 <xsl:when test = "@num = '1'">

 <xsl:value-of select = "firstname"/>

 </xsl:when>

 <xsl:when test = "@NUM = '2'">

 <xsl:value-of select = "lastname"/>

 </xsl:when>

 <xsl:otherwise>

 No match

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

12.4.4.6 The <xsl:for-each select = “node-set”> Tag

The <xsl:for-each select = "node-set"> tag has the following
syntax:

<xsl:for-each select = "node-set">

 [action]

</xsl:for-each>

It performs the action repeatedly for the matching node set.

30

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

For example, the following template matches the students
node and looks for each student/firstName node to display
its firstName text value. Here is an HTML tag for list.

 <xsl:template match = "students">

 <xsl:for-each select = "student/firstName">

 <xsl:value-of select = "self::firstName"/>

 </xsl:for-each>

 </xsl:template>

12.4.4.7 The <xsl:sort> Tag

The <xsl:sort> tag has the following syntax:

<xsl:for-each select = "node-set" order = "order"

 lang = "language" data-type = "data-type"

 case-order = "case-order"/>

It can be used with a <xsl:for-each select = "node-set">
loop or a <xsl:apply-templates> to sort the node set
selected in the loop. The select attribute is required to
specify on what key to sort. All other attributes are
optional. The order attribute can be ascending or
descending, which specifies whether the key strings should
be sorted in ascending or descending order. By default, it
is ascending. The lang attribute specifies the language of
the sort keys. If no lang value is specified, the language
should be determined from the system environment. The
available values for lang are the language code, that is to
say, one of the lowercase two-letter codes defined by ISO-
639. See the Website
www.computing.armstrong.edu/liang/iso639.html for a list of
the language codes. The data-type attribute has two possible
values (text and number), which specifies the data type
whether is string or number. By default, it is a string. The
case-order attribute has two possible values (upper-first
and lower-first), which specifies whether upper-case letters
are be sorted before lower-case letters. The default is
language dependent. For the English language, the default is
upper-first.

For example, the following template matches the students
node and looks for each student node to output its firstName
and lastname text values in descending order of the lastname
values.
 <xsl:template match = "students">

31

http://www.computing.armstrong.edu/liang/iso639.html

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

 <xsl:for-each select = "student">

 <xsl:sort select = "lastname"

 order = "descending"/>

 <xsl:value-of select = "firstname"/>

 <xsl:value-of select = "lastname"/>

 </xsl:for-each>

 </xsl:template>

NOTE: You can use multiple <xsl:sort> tags to
specify the primary sort key, the secondary sort
key, and so on.

NOTE: For complete reference on XSLT, please
visit http://www.w3.org/TR/xslt.

12.4.4.8 Presenting XML Using Stylesheets

An XML document can be presented in various ways, both in
appearance and organization, simply by applying different
stylesheets. This section demonstrates presenting the
student XML document in Listing 12.1 using two different
stylesheets.

12.4.4.8.1 Displaying the Student XML in a Table

The first stylesheet, shown in Listing 12.10, displays ssn,
First Name, mi, and Last Name from the XML document in a
table, as shown in Figure 12.15. The stylesheet has a single
template to match the students element node in the XML
document. The action of the template sorts all student
elements in descending order of their lastname and generates
an HTML table.

Listing 12.10: stylesheet1.xsl

PD: Please add line numbers in the following code

<?xml version = "1.0"?>
<xsl:stylesheet version = "1.0"
 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
 <xsl:template match = "students">
 <html><body><center><table border = "1">
 <tr><th>ssn</th><th>First Name</th>
 <th>mi</th><th>Last Name</th></tr>
 <xsl:for-each select = "student">
 <xsl:sort select = "lastname" order = "descending"/>
 <tr>
 <td>
 <xsl:value-of select = "ssn"/>
 </td>

32

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

 <td>
 <xsl:value-of select = "firstName"/>
 </td>
 <td>
 <xsl:value-of select = "mi"/>
 </td>
 <td>
 <xsl:value-of select = "lastname"/>
 </td>
 </tr>
 </xsl:for-each>
 </table></center></body></html>
 </xsl:template>
</xsl:stylesheet>

Figure 12.15

The contents in the XML document are displayed in a table.

12.4.4.8.1 Displaying the Student XML in a List

The second stylesheet, shown in Listing 12.11, displays ssn,
First Name, mi, and Last Name from the XML document in a
list, as shown in Figure 12.16. The stylesheet has a single
template to match the students element node in the XML
document. The action of the template sorts all student
elements in ascending order of their lastname and generates
an HTML list.

Listing 12.11: stylesheet2.xsl

PD: Please add line numbers in the following code

<?xml version = "1.0"?>
<xsl:stylesheet version = "1.0"
 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
 <xsl:template match = "students">
 <html><body>
 <h2>Student List</h2>
 <xsl:for-each select = "student">
 <xsl:sort select = "lastname" order = "ascending"/>

33

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

 <xsl:value-of select = "ssn"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select = "firstName"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select = "mi"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select = "lastname"/>

 </xsl:for-each>
 </body></html>
 </xsl:template>
</xsl:stylesheet>

Figure 12.16

The contents in the XML document are displayed in a list.

NOTE: Often the stylesheet contains only one
template as shown in this example. In this case,
you can write a stylesheet without explicitly
using the <xsl:template match> tag, as shown in
Listing 12.12.

Listing 12.12: stylesheet3.xsl

PD: Please add line numbers in the following code

<?xml version = "1.0"?>
<html xsl:version = "1.0"
 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
 <body>
 <h2>Student List</h2>
 <xsl:for-each select="students/student">
 <xsl:sort select = "lastname" order = "ascending"/>

 <xsl:value-of select = "ssn"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select = "firstName"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select = "mi"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select = "lastname"/>

34

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

 </xsl:for-each>
 </body>
</html>

12.5 Developing Web Applications Using Oracle XSQL
(Optional)

Oracle XSQL is a tool that integrates SQL with XML to
generate dynamic XML contents. You can embed SQL statements
inside XML tags to create an XML file called XSQL page. The
XSQL page can be dynamically processed like a Java servlet
to generate new XML contents that contain database data. For
example, the XSQL page in Listing 12.13 in Figure 12.18
contains a SQL query to obtain all the records in the
Student table. Student.xsql can be processed by a Java
servlet called XSQL processor to generate the XML file as
shown in Listing 12.14 in Figure 12.17.

<?xml version = "1.0"?>
<xsql:query connection="demo"
 xmlns:xsql="urn:oracle-xsql">
 select * from Student
</xsql:query>

Listing 10.13: student.xsql

<?xml version = '1.0'?>
<ROWSET>
 <ROW num="1">
 <SSN>444111110</SSN>
 <FIRSTNAME>Jacob</FIRSTNAME>
 <MI>R</MI>
 <LASTNAME>Smith</LASTNAME>
 <BIRTHDATE>4/9/1985 0:0:0</BIRTHDATE>
 <STREET>99 Kingston Street</STREET>
 <ZIPCODE>31435</ZIPCODE>
 </ROW>
 ...
</ROWSET>

Listing 10.14: The Generated XML

XSQL
Processor

Figure 12.17

The XSQL processor produces an XML file that contains
database data generated from SQL queries in the XSQL page.

With the XSQL processor properly installed and configured on
your Web server, you can place student.xsql to a directory
under your Web server’s virtual directory hierarchy and
obtain the resulting XML file using an appropriate URL from
a Web browser as shown in Figure 12.18.

35

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

Web Browser Web Server
Send a request URL

XML contents returned

Web Server Host

Host Machine File System

 /xsql/dbbook/Student.xsql

URL Example
 http://www.server.com/xsql/dbbook/Student.xsql

XSQL
Processor

Invoke XSQL
Processor

Generate
new XML

Get Student.xsql

Figure 12.18

A Web browser requests a dynamic XML page from a Web server.

By default, the XSQL processor is automatically installed in
Oracle 9i Enterprise and configured to work with Apache Web
server. Create a directory named dbbook under
c:\oracle9i\xdk\demo\java\xsql and place student.xsql under
c:\oracle9i\xdk\demo\java\xsql\dbbook. You can invoke
student.xsql from the URL
http://localhost/xsql/dbbook/student.xsql, as shown in
Figure 12.19.

36

http://localhost/xsql/dbbook/student.xsql

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

Figure 12.19

The student.xsql can be invoked like a Java servlet.

The results of the SQL query are in XML format. You can
supply a stylesheet to display the XML data in HTML. Listing
12.15 adds a stylesheet in student.xsql. Listing 12.16 gives
a stylesheet. Figure 12.20 shows the result of invoking the
XSQL page with a stylesheet.

Listing 12.15: studnet.xml

PD: Please add line numbers in the following code

<?xml version = "1.0"?>

<?xml-stylesheet type="text/xsl" href="student.xsl"?>

<xsql:query connection="demo"

 xmlns:xsql="urn:oracle-xsql">

 select * from Student

</xsql:query>

Listing 12.16: student.xsl

PD: Please add line numbers in the following code

<?xml version = "1.0"?>

37

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

<xsl:stylesheet version = "1.0"

 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">

 <xsl:template match = "ROWSET">

 <html><body><center><table border = "1">

 <tr><th>ssn</th><th>First Name</th>

 <th>mi</th><th>Last Name</th></tr>

 <xsl:for-each select = "ROW">

 <xsl:sort select = "lastname" order = "descending"/>

 <tr>

 <td>

 <xsl:value-of select = "ssn"/>

 </td>

 <td>

 <xsl:value-of select = "firstName"/>

 </td>

 <td>

 <xsl:value-of select = "mi"/>

 </td>

 <td>

 <xsl:value-of select = "lastname"/>

 </td>

 </tr>

 </xsl:for-each>

 </table></center></body></html>

 </xsl:template>

</xsl:stylesheet>

38

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

Figure 12.20

You can use a stylesheet in XSQL pages.

You have used the <xsql:query> tag in student.xsql. All XSQL
tags begin with the namespace prefix xsql. The xsql tags
specify actions to be performed by XSQL processor. The
following sections introduce several frequently used xsql
tags.

12.5.1 The <xsql:query> Tag

The <xsql:query> tag specifies a SQL query statement as
follows:

<xsl:query connection = "connname"

 xmlns:xsql="urn:oracle-xsql">

 SQL Query Statement

</xsl:query>

The connection attribute specifies a database connection
name. The connection name must be defined in
c:\oracle9i\xdk\admin\XSQLConfig.xml. The connection name
demo is pre-defined in XSQLConfig.xml as follows:

39

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

 <connection name="demo">

 <username>scott</username>

 <password>tiger</password>

 <dburl>jdbc:oracle:thin:@localhost:1521:ORCL</dburl>

 <driver>oracle.jdbc.driver.OracleDriver</driver>

 </connection>

You can modify demo or create a new connection name to
connect to a local or remote database. The database can be
any relational database with appropriate JDBC drivers.

The xmlns attribute declares XSQL namespace identifier
urn:oracle-xsql.

By default, the result data of the SQL query is saved in XML
format that reflects the column structure of the query
result with <ROWSET> as the tag for the root element. For
example, if the query is

select firstName || ' ' || mi || ' ' || lastName as FullName

from Student

where phone like '707%';

the structure of the resulting XML will have the column name
as the element tag as follows:

<?xml version = '1.0'?>

<ROWSET>

 <ROW num="1">

 <FullNAME>fullname1</FullNAME>

 </ROW>

 ...

</ROWSET>

12.5.2 Using Parameters in XSQL

You can pass parameters in XSQL to obtain results
dynamically based on the parameters. For example, the XSQL
page in Figure 12.21 has a parameter on zipCode and a
parameter on mi, which are passed to the SQL query to select
the students with the specified zipCode and mi. You can
invoke the query using the URL as shown in Figure 12.22.

40

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

URL: http://localhost/xsql/dbbook/Student1.xsql?zipCode=31411&mi=K

<?xml version = "1.0"?>

<?xml-stylesheet type="text/xsl" href="Student.xsl"?>

<xsql:query connection="demo" bind-params = "zipCode mi"

 xmlns:xsql="urn:oracle-xsql">

 select * from Student where zipCode = ? and MI = ?

</xsql:query>

Figure 12.21

You can pass parameters to the SQL statement in XSQL pages.

Figure 12.22

You can request an XSQL page with parameters from a Web
browser.

The bind-params attribute lists all the parameters in order
separated by space. The question marks are the placeholders
for the parameters. The parameters from left to right in the
list are bound to the question marks in order of their
appearance in the SQL statement. i.e. The first question
mark corresponds to the first parameter in the parameter
list and the second question corresponds to the second
parameter in the list. Figure 12.23 shows the result of
invoking the parameterized XSQL page with zipCode 31411 and
mi K.

Example 12.1

Retrieving and Presenting Data Using XSQL

41

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

This example demonstrates developing database Web
applications using XML and XSQL. The program starts
with an HMTL form that prompts the user to enter the
ssn and Course ID, as shown in Figure 12.23. Pressing
the Submit button invokes the XSQL page to retrieve
the student first name, mi, last name, course title,
and grade, as shown in Figure 12.24.

Figure 12.23

The form prompts the user to enter ssn and Course ID for
finding student’s grade for the course.

Figure 12.24

The grade for the student on the course is displayed.

The example contains three files:

42

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

findgrade.html (Listing 12.17) displays an HTML form
that enables the user to enter ssn and Course ID and
submit the request to the server.

findgrade.xsql (Listing 12.18) retrieves the first
name, mi, last name, course title, and grade for the
student with the specified ssn and course ID.

findgrade.xsl (Listing 12.19) describes the
stylesheet for the XML data generated from
findgrade.xsql.

Listing 12.17: findgrade.html

PD: Please add line numbers in the following code

<html>

<head>

<title>Student Registration Form</title>

</head>

<body>

Find Your Current Grade

<form action="findgrade.xsql" method="get">

 ssn <input type="text" name="ssn" size="10"/>

 Course ID <input type="text" name="courseId" size="20" />

 <p><input type="submit" value="Submit"/>

 <input type="reset" value="Reset"/></p>

</form>

</body>

Listing 12.18: findgrade.xsql

PD: Please add line numbers in the following code

<?xml version = "1.0"?>

<?xml-stylesheet type="text/xsl" href="findgrade.xsl"?>

<xsql:query connection="demo" bind-params = "ssn courseId"

 xmlns:xsql="urn:oracle-xsql">

 select firstName, mi, lastName, title, grade

 from Student, Enrollment, Course

 where Student.ssn = ? and Enrollment.courseId = ? and

 Enrollment.ssn = Student.ssn and

 Enrollment.courseId = Course.courseId

</xsql:query>

43

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

Listing 12.19: findgrade.xsl

PD: Please add line numbers in the following code

<?xml version = "1.0"?>

<xsl:stylesheet version = "1.0"

 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">

 <xsl:template match = "ROWSET">

 <xsl:choose>

 <xsl:when test = 'ROW'>

 <html><body>

 <xsl:value-of select = "ROW/firstName"/>

 <xsl:text> </xsl:text>

 <xsl:value-of select = "ROW/mi"/>

 <xsl:text> </xsl:text>

 <xsl:value-of select = "ROW/lastname"/>

 <xsl:text>'s grade on </xsl:text>

 <xsl:value-of select = "ROW/TITLE"/>

 <xsl:text> is </xsl:text>

 <xsl:value-of select = "ROW/GRADE"/>

 </body></html>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text>not found</xsl:text>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

</xsl:stylesheet>

Example Review

The XSQL page is invoked from the HTML form (Line X
in findgrade.html). The parameters ssn and courseId
are passed to the XSQL page upon invoked.

The XSQL page uses the SQL query statement (Line X in
findgrade.xsql) to retrieve first name, mi, last
name, course title, and grade for the student with
the passed ssn and course id. The result of the query
is formatted in XML. The XSQL page specifies the XSL
stylesheet findgrade.xsl, which is used to transform
the XML data into HTML for presentation on the
browser.

The XSL stylesheet uses the <xsl:choose> tag (Line X)
to specify the output. If a grade is found, the
student name, course title, and grade are displayed.
Otherwise, the text no found is displayed.

44

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

12.5.3 The <xsql:dml> Tag

You can use the <xsl:dml> tag to contain SQL DML and DDL
statements as follows:

<xsl:dml connection = connname

 bind-params = "parameters"

 commit = "booleanValue"

 xmlns:xsql = "urn:oracle-xsql">

 SQL DML and DDL statements

</xsl:dml>

The attributes connection, bind-params, and xmlns:xsql are
the same as in the <xsl:query> tag. The commit attribute
specifies whether an SQL commit statement is called after a
successful execution of the DML statement. The default value
of commit is no.

Example 12.2

Using DML Statements in XSQL Pages

This example demonstrates using DML statements in
XSQL. The program starts with an HMTL form for
receiving student information, as shown in Figure
12.25. Pressing the Submit button invokes the XSQL
page to store the student information into the
database. If successful, no errors are displayed as
shown in Figure 12.26.

45

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

Figure 12.25

The form prompts the user to enter student information.

Figure 12.26

The student information is stored in the database with no
errors.

The example contains two files:

registration.html (Listing 12.20) displays an HTML
form that enables the user to enter student
information and submit the information to the server.

registration.xsql (Listing 12.21) inserts the student
information to the database.

46

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

47

Listing 12.20:

findgrade.html

PD: Please add line numbers in the following code

 <html>

 <head>

 <title>Simple Registration without Confirmation</title>

 </head>

 <body>

 Please register to your instructor's student address book.

 <form method="post" action="registration.xsql">

 <p>ssn *

 <input type="text" name="ssn">

 <p>Last Name *

 <input type="text" name="lastName">

 First Name *

 <input type="text" name="firstName">

 mi <input type="text" name="mi" size="3"></p>

 <p>Phone <input type="text" name="phone" size="20">

 Birth Date <input type="text" name="birthDate" size="20">

 <p>Street <input type="text" name="street" size="50"></p>

 <p>Zip <input type="text" name="zipCode" size="9"></p>

 <p><input type="submit" name="Submit" value="Submit">

 <input type="reset" value="Reset"></p>

 </form>

 <p>* required fields</p>

 </body>

 </html>

Listing 12.21:

registration.xsql

PD: Please add line numbers in the following code

<?xml version = "1.0"?>

<xsql:dml connection="demo" commit="yes" bind-params =

 "ssn firstName mi lastName phone birthDate street zipCode"

 xmlns:xsql="urn:oracle-xsql">

 begin

 insert into Student values (?, ?, ?, ?, ?, ?, ?, ?);

 commit;

 end;

</xsql:dml>

Example Review

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

The HTML form passes ssn, firstName, mi, lastname,
phone, birthDate, street, and zipCode to the XSQL
page, which uses the insert statement to store these
values into the Student table. The commit attribute
(Line 2 in registration.html) tells the XSQL
processor to call a commit statement after the SQL
insert statement is successfully executed. Due to a
bug, the commit statement is not automatically
invoked. To fix the bug, the commit statement is
explicitly called in the XSQL page (Line X).

This example is similar to Example 8.3, “Registering
a Student in Database.” Example 8.3 is implemented
using a Java serlvet, but this example is implemented
using XSQL. As you see, it is much simpler to use
XSQL.

Chapter Summary

This chapter introduced XML, DTD, XPath, XSLT, and XSQL and
using them to develop useful applications. You learned to
use XML to structure data, use DTD to define the structure
of XML documents, use XPath to traverse XML documents, use
XSLT to transform XML documents, and use XSQL to access
database and obtain results in XML.

Review Questions
12.1 What are the differences between XML and HTML? Is XML case-

sensitive? Is HTML case-sensitive?

12.2 What is a well-formed HTML document?

12.3 How do you declare an XML document?

12.4 How do write comments in XML?

12.5 What is a well-formed HTML document?
12.6 What is an empty element? How do you write an empty element?
12.7 What is an XML attribute?
12.8 How do you denote special characters <, >, ", ', and & in XML?
12.9 What is a CDATA section in XML?
12.10 What is a well-formed XML document? What is a valid XML document?
12.11 What is a DTD (Document Type Definition) for?
12.12 What are an internal DTD and an external DTD?
12.13 What are the symbols +, *, and ? for in DTD?
12.14 Describe the attribute types: CDATA, NMTOKEN, NMTOKENS, ID, IDREF,
IDREFS, ENTITY, and ENTITIES.
12.15 What is an XSL stylesheet?
12.16 What does an XSLT processor do?
12.17 What is an XPath tree? What are the axes? What are the node set
operators? What are the predicates?
12.18 List some node set functions.
12.19 List some string functions.
12.20 How does an XSLT processor work?

48

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

12.21 What happens if a node matches two or more patterns in the
stylesheet?
12.22 Describe the following XSLT action tags:

<xsl:apply-templates select = "nodeset">

<xsl:text>

<xsl:value-of select = exp/>

<xsl:if = condition>

<xsl:choose>

<xsl:for-each select = "node-set">

<xsl:sort>

12.23 What is XSQL?
12.24 What is the role for XSQL processor?
12.25 How do you specify the connection to a database from XSQL?
12.26 How do you pass parameters in XSQL?
12

.27 Can you execute SQL DML and DDL statements in XSQL?

Programming Exercises

12.1 Write a stylesheet to transform student.xml in Listing
12.1 into a new XML document as follows:

<?xml version = "1.0"?>

<!-- XML document for students -->

<ROWS>

 <ROW NUM = "1">

 <ssn>444111110</ssn>

 <firstname>Jacob</firstname>

 <mi>R</mi>

 <lastname>Smith</lastname>

 <birthdate>4/9/1985</birthdate>

 <phone>9129219434</phone>

 <street>99 Kingston Street</street>

 <zipcode>31435</zipcode>

 </ROW>

 <ROW NUM = "2">

 <ssn>444111111</ssn>

 <firstname>John</firstname>

 <mi>K</mi>

 <lastname>Stevenson</lastname>

 <birthdate>4/9/1985</birthdate>

 <phone>9129219434</phone>

 <street>100 Main Street</street>

 <zipcode>31411</zipcode>

 </ROW>

</ROWS>

The <STUDNETS> and <student> tags in original document are
transformed to <ROWS> and <ROW>.

49

C:\idrive\web\intro6e\supplement\Supplement6(c)XML.doc Last printed

50

12.2 Write an XSQL page to list all faculty in the Math
department.

12.3 Write an XSLQ page to list all faculty in the specified
department passed as a parameter.

	Supplement VI.C: XML

