

© Copyright Y. Daniel Liang, 2005
8

Supplement IV.E: Tutorial for Tomcat

For Introduction to Java Programming
By Y. Daniel Liang

This supplement covers the following topics:

 Obtaining and Installing Tomcat
 Starting and Stopping Tomcat
 Choosing a Different Port
 Compiling Servlets
 Mapping a Servlet to a URL
 Running Servlets
 Running JSP
 Deploying Web Application Using WAR files
 Setting a Secured Web Server

0 Introduction

Tomcat, developed by Apache (www.apache.org), is a standard
reference implementation for Java servlets and JSP. It can
be used standalone as a Web server or be plugged into a Web
server like Apache, Netscape Enterprise Server, or Microsoft
Internet Information Server. There are many versions of
Tomcat. This tutorial uses Tomcat 5.5.9 as an example. The
tutorial should also apply to all later versions of Tomcat.

1 Obtaining and Installing Tomcat

You can download Tomcat from
http://tomcat.apache.org/download-60.cgi. On this page,
select zip under Core to download a zip file (i.e., apache-
tomcat-6.0.29.zip). You can use FilZip to extract it into
c:\. FilZip is a free compression/decompression utility,
which can be downloaded from http://www.filzip.com.

2 Starting and Stopping Tomcat

Before running the servlet, you need to start the Tomcat
servlet engine. To start Tomcat, you have to first set the
JAVA_HOME environment variable to the JDK home directory
using the following command. (Please note no space before or
after the = sign in the following line.)

set JAVA_HOME=c:\Program Files\java\jdk1.6.0_24

The JDK home directory is where your JDK is stored. On my
computer, it is c:\Program Files\jdk1.6.0_24. You may have a

© Copyright Y. Daniel Liang, 2005
9

different directory. You can now start Tomcat using the
command startup from c:\jakarta-tomcat-5.5.9\bin as follows:

c:\jakarta-tomcat-5.5.9\bin>startup

NOTE: If you are using Tomcat 7.0.2, the default
directory is c:\apache-tomcat-7.0.2. We use
Tomcat 5.5.9 as example in this tutorial.

NOTE: By default, Tomcat runs on part 8080. An
error occurs if this port is currently being
used. You can change the port number in
c:\jakarta-tomcat-5.5.9\conf\server.xml, as
discussed in the next section.

NOTE: To terminate Tomcat, use the shutdown
command from c:\jakarta-tomcat-5.5.9\bin.

To prove that Tomcat is running, type the URL
http://localhost:8080 from a Web browser, as shown in Figure
1.

Figure 1
The default Tomcat page is displayed.

3 Choosing a Different Port (Optional)

By default, Tomcat runs on part 8080. You can change it to a
different port. To do so, open c:\jakarta-tomcat-
5.5.9\conf\server.xml using a text editor such as NotePad.
Search for 8080 and change it to a desired port number such
as 8100 in the following context.

 <Connector className="org.apache.coyote.tomcat4.CoyoteConnector"

 port="8080" minProcessors="5" maxProcessors="75"

 enableLookups="true" redirectPort="8443"

 acceptCount="100" debug="0" connectionTimeout="20000"

 useURIValidationHack="false" disableUploadTimeout="true" />

© Copyright Y. Daniel Liang, 2005
10

4 Creating a Servlet

A servlet resembles an applet in some extent. Every Java
applet is a subclass of the Applet class. You need to
override appropriate methods in the Applet class to
implement the applet. Every servlet is a subclass of the
HttpServlet class. You need to override appropriate methods
in the HttpServlet class to implement the servlet. Listed
below is a simple servlet example that generates a response
in HTML using the doGet method.

import javax.servlet.*;
import javax.servlet.http.*;

public class FirstServlet extends HttpServlet {
 /** Handle the HTTP <code>GET</code> method.
 * @param request servlet request
 * @param response servlet response
 */
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException {
 response.setContentType("text/html");
 java.io.PrintWriter out = response.getWriter();
 // output your page here
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("Hello, Java Servlets");
 out.println("</body>");
 out.println("</html>");
 out.close();
 }
}

5 Compiling Servlets

Suppose you have installed Tomcat 5.5.9 at c:\jakarta-
tomcat-5.5.9. To compile FirstServlet.java, you need to add
c:\jakarta-tomcat-5.5.9\common\lib\servlet-api.jar to the
classpath from DOS prompt as follows:

set classpath=%classpath%;c:\jakarta-tomcat-5.5.9\common\lib\servlet-api.jar

servlet.jar contains the classes and interfaces to support
servlets. Use the following command to compile the servlet:

javac FirstServlet.java

Copy the resultant .class file into c:\jakarta-tomcat-
5.5.9\webapps\liangweb\WEB-INF\classes so it can be found at
runtime.

TIP: You can compile FirstServlet directly into
the target directory by using the –d option in
the javac command as follows:

© Copyright Y. Daniel Liang, 2005
11

javac FirstServlet.java –d targetdirectory

6 Mapping a Servlet to a URL

Before you can run a servlet in Tomcat 5.5.9, you have to
first create the web.xml file with a servlet entry and a
mapping entry. This file is located in C:\jakarta-tomcat-
5.5.9\webapps\liangweb\WEB-INF\web.xml. If the file already
exists, insert a servlet entry and a mapping entry into
web.xml for the servlet.

The servlet entry declares an internal servlet name for a
servlet class using the following syntax:

<servlet>

 <servlet-name>Internal Name</servlet-name>

 <servlet-class>servlet class name</servlet-class>

</servlet>

The map entry maps an internal servlet name with a URL using
the following syntax:

<servlet-mapping>

 <servlet-name>Internal Name</servlet-name>

 <url-pattern>URL</url-pattern>

</servlet-mapping>

For example, before running FirstServlet.class, you may
insert the following lines to the web.xml file:

<web-app>

 <servlet>

 <servlet-name>FirstServlet</servlet-name>

 <servlet-class>FirstServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>FirstServlet</servlet-name>

 <url-pattern>/FirstServlet</url-pattern>

 </servlet-mapping>

</web-app>

NOTE

<Side Remark: download web.xml>
For your convenience, I have created the web.xml
that contains the decriptions for running all
servlets in this chapter. You can download it
from
www.cs.armstrong.edu/liang/intro6e/supplement/we
b.xml.

TIP
<side remark: Web development tools>

© Copyright Y. Daniel Liang, 2005
12

You can use an IDE such as NetBeans, Eclipse,
and JBuilder to simplify development of Web
applications. The tool can automatically create
the directories and files. For more information,
see the tutorials on NetBeans, Eclipse, and
JBuilder on the Companion Website.

7 Running Servlets

To run the servlet, start a Web browser and type
http://localhost:8080/liangweb/FirstServlet in the URL, as
shown in Figure 2.

Figure 2

You can request a servlet from a Web browser.

NOTE: You can use the servlet from anywhere on
the Internet if your Tomcat is running on a host
machine on the Internet. Suppose the host name
is liang.armstrong.edu; use the URL http://
liang.armstrong.edu:8080/liangweb/FirstServlet
to test the servlet.

NOTE: If you have modified the servlet, you need
to shut down and restart Tomcat.

8 Running JSP
To run a JSP (e.g., Factorial.jsp), store it in
webapps/liangweb, start a Web browser and type
http://localhost:8080/liangweb/Factorial.jsp in the URL, as
shown in Figure 3.

© Copyright Y. Daniel Liang, 2005
13

Figure 3
You can request a JSP from a Web browser.

9 Deploying Web Application Using WAR Files
Servlets, JSPs and their supporting files are placed in the
appropriate subdirectories under the webapps directory in
Tomcat. For convenience, you can create all the files under
the webapps directory into one compressed file. This file is
known as the WAR (Web Application Archive) and ends with the
.war file extension. You can deploy a Web application by
placing a WAR file in the webapps directory. When a Web
server begins execution, it extracts the WAR file’s contents
into the appropriate webapps subdirectories.

9.1 Creating WAR Files
You can create a WAR file using a tool or the jar command.
If you use NetBeans, JBuilder, or Eclipse, a WAR file is
automatically created every time you build the Web project.
(e.g., you can find this file under the dist node in a Web
project). To create a WAR file for the examples in Tmocat,
change the directory to c:\jakarta-tomcat-
5.5.9\webapps\liangweb, and type the following command:

jar –cvf liangweb.war .

A WAR file named liangweb.war is now created for all files
and directories under \webapps\liangweb. The file is in
\webapps\liangweb\liangweb.war.

9.2 Deploying WAR Files
You can now deploy the WAR file to a new machine. Follow the
steps below to test liangweb.war:

1. Place liangweb.war to \webapps\liangweb.war under your

© Copyright Y. Daniel Liang, 2005
14

Tomcat home directory.
2. Delete the entire directory of liangweb under webapps

if it exists (this is necessary to enable new contents
to be created).

3. Start Tomcat (if it is already running, you need to
shut it down first.) Tomcat automatically extracts the
contents in liangweb.war into the appropriate
directories. You will see a new directory named
liangweb created under the webapps directory.

4. Enter URL http://localhost:8080/liangweb/FirstServlet
to test the servlet.

10 Setting a Secured Server

You can set the Tomcat server to activate basic HTTP
authentication. You need to specify a security realm, which
is a term that defines authorized users. There are three
types of realms: Memory, Database, and JNDI. This section
introduces how to set Memory and Database realms.

10.1 Setting a Secured Server Using Memory Realm

To set a Memory realm, do the following:

1. Inside the <Engine> ... </Engine> tag in conf/server.xml,
insert the following line:

<Realm className="org.apache.catalina.realm.MemoryRealm" />

TIP: The server.xml file already has this line
commented. Simply uncomment it to set a Memory
realm.

2. Edit conf/tomcat-users.xml to add user name, password,
and the role for each user. For example, the following
content defines two users with the role named test.

<?xml version='1.0' encoding='utf-8'?>

<tomcat-users>

 <role rolename="test"/>

 <user username="john" password="cat" roles="test"/>

 <user username="scott" password="tiger" roles="test"/>

</tomcat-users>

NOTE: The user authentication information is
defined in the file tomcat-users.xml. This
information is loaded to an object stored in the
memory upon Tomcat startup. That is why it is
called the Memory realm.

3. Uncomment the following lines in conf/web.xml and modify
the <role-name> field to test. This is the role used for the
users in the Memory realm defined in Step 2.

© Copyright Y. Daniel Liang, 2005
15

...

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>

 Protected Site

 </web-resource-name>

 <!-- This would protect the entire site -->

 <url-pattern> /* </url-pattern>

 <!-- If you list http methods,

 only those methods are protected -->

 <http-method> DELETE </http-method>

 <http-method> GET </http-method>

 <http-method> POST </http-method>

 <http-method> PUT </http-method>

 </web-resource-collection>

 <auth-constraint>

 <!-- Roles that have access -->

 <role-name> test </role-name>

 </auth-constraint>

 </security-constraint>

 <!-- BASIC authentication -->

 <login-config>

 <auth-method> BASIC </auth-method>

 <realm-name> Example Basic Authentication </realm-name>

 </login-config>

 <!-- Define security roles -->

 <security-role>

 <description> Test role </description>

 <role-name> test </role-name>

 </security-role>

..

4. Start Tomcat.

5. Type http://localhost:8080/liangweb/FirstServlet from a
Web browser, you will be prompted to enter user name and
password, as shown in Figure 4.

© Copyright Y. Daniel Liang, 2005
16

Figure 4
Tomcat supports basic authentication using the Memory realm.

10.2 Setting a Secured Server Using Database Realm

To set a Database realm, do the following:

1. Inside the <Engine> ... </Engine> tag in conf/server.xml,
insert the following lines:

<Realm className="org.apache.catalina.realm.JDBCRealm"

 driverName="oracle.jdbc.driver.OracleDriver"

 connectionURL="jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl"

 connectionName="scott" connectionPassword="tiger"

 userTable="Users" userNameCol="userName" userCredCol="user_pass"

 userRoleTable="UserRoles" roleNameCol="roleName" />

 The className is always the same.
 The driverName specifies a fully qualified JDBC driver

name (e.g., oracle.jdbc.driver.OracleDriver for Oracle
database). The connectionURL specifies the database
URL. Note that the JAR file for the driver should be
placed in the /common/lib directory.

 The connectionName is the database user name in which
authorized Tomcat users are stored.

 The connectionPassword specifies the password for the
database user.

 The userTable specifies the table where the authorized
Tomcat user information is stored.

 The userNameCol specifies the column name in the
userTable table for storing the authorized Tomcat user
names.

 The userCredCol specifies the column name in the

© Copyright Y. Daniel Liang, 2005
17

userTable table for storing the authorized Tomcat user
password.

 The roleNameCol specifies the column name in the
userCredCol table for storing the role names.

2. Create the Users table and UserRoles table tables in the
database as follows:

create table Users (

 userName varchar(15) not null primary key,

 userPass varchar(15) not null

);

create table UserRoles (

 userName varchar(15) not null,

 roleName varchar(15) not null,

 primary key (userName, roleName)

);

Authorize two users named student1 and student2 with
password pstudent1 and pstudent2. Store the information in
the Users table, as follows:

insert into Users values ('student1', 'pstudent1');

insert into Users values ('student2', 'pstudent2');

Assign student1 and studnet2 to the role named test and
store the information in the UserRoles table, as follows:

insert into UserRoles values ('student1', 'test');

insert into UserRoles values ('student2', 'test');

3. Uncomment the following lines in conf/web.xml and modify
the <role-name> field to test. This is the role used for the
users in the Memory realm defined in Step 2.

...

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>

 Protected Site

 </web-resource-name>

 <!-- This would protect the entire site -->

 <url-pattern> /* </url-pattern>

 <!-- If you list http methods,

 only those methods are protected -->

 <http-method> DELETE </http-method>

 <http-method> GET </http-method>

 <http-method> POST </http-method>

 <http-method> PUT </http-method>

 </web-resource-collection>

 <auth-constraint>

© Copyright Y. Daniel Liang, 2005
18

 <!-- Roles that have access -->

 <role-name> test </role-name>

 </auth-constraint>

 </security-constraint>

 <!-- BASIC authentication -->

 <login-config>

 <auth-method> BASIC </auth-method>

 <realm-name> Example Basic Authentication </realm-name>

 </login-config>

 <!-- Define security roles -->

 <security-role>

 <description> Test role </description>

 <role-name> test </role-name>

 </security-role>

..

4. Start Tomcat.

5. Type http://localhost:8080/liangweb/FirstServlet from a
Web browser, you will be prompted to enter user name and
password, as shown in Figure 4.

Figure 5
Tomcat supports basic authentication using the Database
realm.

