
Supplement: Assertions
For Introduction to Java Programming

By Y. Daniel Liang

An assertion is a Java statement that enables you to assert
an assumption about your program. An assertion contains a
Boolean expression that should be true during program
execution. Assertions can be used to ensure program
correctness and avoid logic errors.

1 Declaring Assertions
An assertion is declared using the new Java keyword assert
in JDK 1.4, as follows:

assert assertion;
or
assert assertion : detailMessage;

where assertion is a Boolean expression and detailMessage
is a primitive-type or an Object value.
When an assertion statement is executed, Java evaluates the
assertion. If it is false, an AssertionError will be
thrown. The AssertionError class has a no-arg constructor
and seven overloaded single-parameter constructors of type
int, long, float, double, boolean, char, and Object. For
the first assert statement with no detailed message, the
no-arg constructor of AssertionError is used. For the
second assert statement with a detailed message, an
appropriate AssertionError constructor is used to match the
data type of the message. AssertionError is a subclass of
Error, so when an assertion becomes false, the program
displays a message on the console and exits.

Here is an example of using assertions:

public class AssertionDemo {
 public static void main(String[] args) {
 int i; int sum = 0;
 for (i = 0; i < 10; i++) {
 sum += i;
 }
 assert i == 10;
 assert sum > 10 && sum < 5 * 10 : "sum is " + sum;
 }
}

The statement assert i == 10 asserts that i is 10 when the
statement is executed. If i is not 10, an AssertionError is
thrown. The statement assert sum > 10 && sum < 5 * 10 :
"sum is " + sum asserts that sum > 10 and sum < 5 * 10. If
false, an AssertionError with the message "sum is " + sum
is thrown.
Suppose you typed i < 100 instead of i < 10 by mistake in
line 4, the following AssertionError would be thrown:

Exception in thread "main" java.lang.AssertionError
 at AssertionDemo.main(AssertionDemo.java:7)

Suppose you typed sum += 1 instead of sum += i by mistake
in line 5, the following AssertionError would be thrown:

Exception in thread "main" java.lang.AssertionError: sum is 10
 at AssertionDemo.main(AssertionDemo.java:8)

2 Running Programs with Assertions
By default, assertions are disabled at runtime. To enable
them, use the switch –enableassertions, or –ea for short,
as follows:

java –ea AssertionDemo

Assertions can be selectively enabled or disabled at the
class level or the package level. The disable switch is –
disableassertions, or –da for short. For example, the
following command enables assertions in package package1
and disables assertions in class Class1.

java –ea:package1 –da:Class1 AssertionDemo

3 Using Exception Handling or Assertions

Assertion should not be used to replace exception handling.
Exception handling deals with unusual circumstances during
program execution. Assertions are intended to ensure the
correctness of the program. Exception handling addresses
robustness, whereas assertion addresses correctness. Like
exception handling, assertions are not used for normal
tests, but for internal consistency and validity checks.
Assertions are checked at runtime and can be turned on or
off at startup time.

Do not use assertions for argument checking in public
methods. Valid arguments that may be passed to a public
method are considered to be part of the method’s contract.
The contract must always be obeyed whether assertions are
enabled or disabled. For example, the following code in (a)
should be rewritten using exception handling, as shown in
(b).

public void setRadius(double newRadius) {
 assert newRadius >= 0;
 radius = newRadius;
}

(a)

(b)

public void setRadius(double newRadius) {
 if (newRadius >= 0)
 radius = newRadius;
 else
 throw new IllegalArgumentException(
 "Radius cannot be negative");
}

Use assertions to reaffirm assumptions. This will increase
your confidence in the program’s correctness. A common use
of assertions is to replace assumptions with assertions in
the code. For example, the following code in (a) can be
replaced by (b).

if (even) {
 ...
}
else { // even is false
 ...
}

(a)

if (even) {
 ...
}
else {
 assert !even;
 ...
}

(b)

Similarly, the following code in (a) can also be replaced
by (b).

if (numberOfDollars > 1) {
 ...
}
else if (numberOfDollars == 1) {
 ...
}

(a)

if (numberOfDollars > 1) {
 ...
}
else if (numberOfDollars == 1) {
 ...
}
else

 assert false : numberOfDollars;

(b)

Another good use of assertions is to place them in a switch
statement without a default case. For example,

switch (month) {
 case 1: ... ; break;
 case 2: ... ; break;
 ...
 case 12: ... ; break;

 default: assert false : "Invalid month: " + month
}

