

© Copyright Y. Daniel Liang, 2005
8

Supplement: Hiding Data Fields and Static Methods
For Introduction to Java Programming

By Y. Daniel Liang

You can override an instance method, but you cannot override
a data field (instance or static) or a static method. If you
declare a data field or a static method in a subclass with
the same name as one in the superclass, the one in the
superclass is hidden, but it still exists. The two data
fields or static methods are independent. You can reference
the hidden data field or static method using the keyword
super in the subclass. The hidden field or method can also
be accessed via a reference variable of the superclass’s
type.

When invoking an instance method from a reference variable,
the actual class of the object referenced by the variable
decides which implementation of the method is used at
runtime. When accessing a data field or a static method, the
declared type of the reference variable decides which field
or static method is used at compile time. This is the key
difference between invoking an instance method and accessing
a data field or a static method.

Listing 1 demonstrates the effect of hiding data fields and
static methods.

Listing 1 HidingDemo.java

public class HidingDemo {
 public static void main(String[] args) {
 A x = new B();

 // Access instance data field i
 System.out.println("(1) x.i is " + x.i);
 System.out.println("(2) (B)x.i is " + ((B)x).i);

 // Access static data field j
 System.out.println("(3) x.j is " + x.j);
 System.out.println("(4) ((B)x).j is " + ((B)x).j);

 // Invoke static method m1
 System.out.println("(5) x.m1() is " + x.m1());
 System.out.println("(6) ((B)x).m1() is " + ((B)x).m1());

 // Invoke instance method m2
 System.out.println("(7) x.m2() is " + x.m2());
 System.out.println("(8) x.m3() is " + x.m3());
 }
}

© Copyright Y. Daniel Liang, 2005
9

class A {
 public int i = 1;
 public static int j = 11;

 public static String m1() {
 return "A's static m1";
 }

 public String m2() {
 return "A's instance m2";
 }

 public String m3() {
 return "A's instance m3";
 }
}

class B extends A {
 public int i = 2;
 public static int j = 12;

 public static String m1() {
 return "B's static m1";
 }

 public String m2() {
 return "B's instance m2";
 }
}

Sample Output

(1) x.i is 1
(2) (B)x.i is 2
(3) x.j is 11
(4) ((B)x).j is 12
(5) x.m1() is A's static m1
(6) ((B)x).m1() is B's static m1
(7) x.m2() is B's instance m2
(8) x.m3() is A's instance m3

Here are the explanations:
(1) x.i is 1 because x’s declared type is the class A.
(2) To use i in the class B, you need to cast x to B

using ((B)x).i.
(3) x.j is 11 because x’s declared type is the class A.

x.j is better written as A.j.
(4) To use j in the class B, you need to cast x to B

using ((B)x).j. ((B)x).j is better written as B.j.

© Copyright Y. Daniel Liang, 2005
10

(5) x.m1() invokes the static m1 method in A because x’s
declared type is A. x.m1() is better written as
A.m1().

(6) ((B)x).m1() invokes the static m1 method in B
because the type for (B)x is B. ((B)x).m1()is better
written as B.m1().

(7) x.m2() invokes the m2 method in B at runtime because
x actually references to the object of the class B.

(8) x.m3() invokes the m3 method in A at runtime because
m3 is implemented in A.

NOTE
A static method or a static field can always be
accessed using its declared class name,
regardless of whether it is hidden or not.

