

8

Supplement: Initialization Block
For Introduction to Java Programming

By Y. Daniel Liang

Initialization blocks can be used to initialize objects
along with the constructors. An initialization block is a
block of statements enclosed inside a pair of braces. An
initialization block appears within the class declaration,
but not inside methods or constructors. It is executed as if
it were placed at the beginning of every constructor in the
class.

Initialization blocks can simplify the classes if you have
multiple constructors sharing a common code and none of them
can invoke other constructors. The common code can be placed
in an initialization block, as shown in the example in
Figure 1a. In this example, none of the constructors can
invoke any of the others using the syntax this(...). When an
instance is created using a constructor of the Book class,
the initialization block is executed to increase the object
count by 1. The program is equivalent to Figure 1b:

public class Book {
 private static int numOfObjects;
 private String title;
 private int id;

 public Book(String title) {
 numOfObjects++;
 this.title = title;
 }

 public Book(int id) {
 numOfObjects++;
 this.id = id;
 }
}

public class Book {
 private static int numOfObjects;
 private String title
 private int id;

 public Book(String title) {
 this.title = title;
 }

 public Book(int id) {
 this.id = id;
 }

 {
 numOfObjects++;
 }
}

Equivalent

(a) A class with initialization blocks (b) An
equivalent class

Figure 1
An initialization block can simplify coding for
constructors.

NOTE
A class may have multiple initialization blocks.
In such cases, the blocks are executed in the
order they appear in the class.

The initialization block in Figure 10.7(a) is referred to as
an instance initialization block because it is executed
whenever an instance of the class is created. A static

9

initialization block is much like an instance initialization
block except that it is declared static, can only refer to
static members of the class, and is executed when the class
is loaded. The JVM loads the class dynamically when it is
needed. A superclass is loaded before its subclasses. The
order of the execution can be summarized as follows:

1. When a class is used for the first time, it needs to be

loaded. Loading involves two phases:

1.1. Load superclasses. Before loading any class, its
superclass must be loaded if it is not already
loaded. This is a recursive process until a
superclass along the inheritance chain is already
loaded.

1.2. After a class is loaded to the memory, its static
data fields and static initialization block are
executed in the order they appear in the class.

2. Invoking a constructor of the class involves three
phases:

 2.1. Invoke a constructor of the superclass. This is a

recursive process until the superclass is
java.lang.Object.

 2.2. Initialize instance data fields and execute
initialization blocks in the order they appear in the
class.

 2.3. Execute the body of the constructor.

Listing 1 demonstrates the execution order of initialization
blocks.

Listing 1 InitializationDemo.java

public class InitializationDemo {
 public static void main(String[] args) {
 new InitializationDemo();
 }

 public InitializationDemo() {
 new M();
 }

 {
 System.out.println("(2) InitializationDemo's instance block");
 }

 static {
 System.out.println("(1) InitializationDemo's static block");
 }
}

10

class M extends N {
 M() {
 System.out.println("(8) M's constructor body");
 }

 {
 System.out.println("(7) M's instance initialization block");
 }

 static {
 System.out.println("(4) M's static initialization block");
 }
}

class N {
 N() {
 System.out.println("(6) N's constructor body");
 }

 {
 System.out.println("(5) N's instance initialization block");
 }

 static {
 System.out.println("(3) N's static initialization block");
 }
}

Sample Output

(1) InitializationDemo's static block
(2) InitializationDemo's instance block
(3) N's static initialization block
(4) M's static initialization block
(5) N's instance initialization block
(6) N's constructor body
(7) M's instance initialization block
(8) M's constructor body

The program is executed in the following order:
(1) The superclass of InitializationDemo,

java.lang.Object, is loaded first. Then class
InitializationDemo is loaded, so
InitializationDemo’s static initialization block is
executed.

(2) InitializationDemo’s constructor is invoked (line
3), so InitializationDemo’s instance initialization
block is executed.

(3) When executing new M() (line 7), class M needs to be
loaded, which causes class M’s superclass (i.e., N)
to be loaded first. So N’s static initialization
block is executed. (Note that N’s superclass
java.lang.Object has already been loaded in (1)).

11

(4) Class M is now loaded. So M’s static initialization
block is executed.

(5) When invoking M’s constructor, the no-arg
constructor of M’s superclass is invoked first;
therefore, N’s instance initialization block is
executed.

(6) The regular code in N’s no-arg constructor is
invoked after N’s instance initialization block is
executed.

(7) After N’s no-arg constructor is invoked, M’s no-arg
constructor is invoked, which causes M’s instance
initialization block to be executed first.

(8) The regular code in M’s no-arg constructor is
invoked after M’s instance initialization block is
executed.

NOTE
If an instance variable is declared with an
initial value (e.g., double radius = 5), the
variable is initialized just as in an
initialization block. That is, it is initialized
when the constructor of the class is executed.
If a static variable is declared with an initial
value (e.g., static double radius = 5), the
variable is initialized just as in a static
initialization block. That is, it is initialized
when the class is loaded.

Q: Why the code in (a) is correct, but the code in (b) is
wrong?

public class A {
 private int[] grid = new int[SIZE];
 static int SIZE = 10;
}

public class A {
 private int[] grid = new int[SIZE];
 int SIZE = 10;
}

 (a) (b)

A: The static field SIZE is initialized before the instance
field grid. So, (a) is correct. In (b) grid is initialized,
but SIZE has not been defined yet.

