

8

Supplement: Methods in the Object Class
For Introduction to Java Programming

By Y. Daniel Liang

Chapter 11 introduced the toString method in the Object
class. Other useful methods are as follows:

 public boolean equals(Object object)
 public int hashCode()
 protected void finalize() throws Throwable
 protected native Object clone()

throws CloneNotSupportedException
 public final native Class getClass()

NOTE
The native modifier indicates that the method is
implemented using a programming language other
than Java. Some methods, such as clone, need to
access hardware using the native machine
language or the C language. These methods are
marked native. A native method can be final,
public, private, protected, overloaded, or
overridden.

NOTE
The finalize method may throw Throwable, and the
clone method may throw
CloneNotSupportedException. Exception handling
will be introduced in Chapter 18, “Exceptions
and Assertions.” (Chapter 18 can be covered
after this chapter.) For now, you need to know
that throws Throwable and throws
CloneNotSupportedException are part of the
method declarations for the finalize and clone
methods.

1 The equals Method

The equals method tests whether two objects are equal. The
syntax for invoking it is:

object1.equals(object2);

The default implementation of the equals method in the
Object class is:

public boolean equals(Object obj) {
 return (this == obj);

9

}

Thus, using the equals method is equivalent to the ==
operator in the Object class, but it is really intended for
the subclasses of the Object class to modify the equals
method to test whether two distinct objects have the same
content.

You have already used the equals method to compare two
strings in §8.2, "The String Class." The equals method in
the String class is inherited from the Object class and is
modified in the String class to test whether two strings are
identical in content. You can override the equals method in
the Circle class to compare whether two circles are equal
based on their radius as follows:

public boolean equals(Object o) {
 if (o instanceof Circle) {
 return radius == ((Circle)o).radius;
 }
 else
 return false;
}

NOTE
The == comparison operator is used for comparing
two primitive data type values or for
determining whether two objects have the same
references. The equals method is intended to
test whether two objects have the same contents,
provided that the method is modified in the
defining class of the objects. The == operator
is stronger than the equals method, in that the
== operator checks whether the two reference
variables refer to the same object.

CAUTION
Using the signature equals(SomeClassName obj)
(e.g., equals(Circle c)) to override the equals
method in a subclass is a common mistake. You
should use equals(Object obj)). See Review
Question 10.16.

2 The hashCode Method

Invoking hashCode() on an object returns the object’s hash
code. Hash code is an integer that can be used to store the
object in a hash set so that it can be located quickly. Hash
sets will be introduced in Chapter 26, “Java Collections
Framework.” The hashCode implemented in the Object class

10

returns the internal memory address of the object in
hexadecimal. Your class should override the hashCode method
whenever the equals method is overridden. By contract, if
two objects are equal, their hash codes must be same. Two
unequal objects may have the same hash code, but you should
implement the hashCode method to avoid too many such cases.
Additionally, invoking the hashCode method multiple times
must return the same integer during one execution of the
program. The integer need not be the same in different
executions. For example, the hashCode method is overridden
in the String class by returning s0*31

(n-1) + s1*31
(n-2) + ... +

sn-1 as the hash code, where si is s.charAt(i).

If you override the equals method in a class, you should
also override the hashCode method in the same class to
ensure that two equal Circle objects have the same hashCode.
For example, you may override the hashCode method in the
Circle class as follows:

public int hashCode() {
 return (int)(radius * 1999711);
}

3 The finalize Method

The finalize method is invoked on an object by the garbage
collector when the object becomes garbage. An object becomes
garbage if it is no longer accessed. By default, the
finalize method does nothing. A subclass should override the
finalize method to dispose of system resources or to perform
other cleanup, if necessary.

NOTE: The finalize method is invoked by the JVM.
You should never write the code to invoke it in
your program. For this reason, the protected
modifier is appropriate.

Listing 10.9 demonstrates the effect of overriding the
finalize() method.

Listing 1 FinalizationDemo.java

public class FinalizationDemo {
 public static void main(String[] args) {
 Cake a1 = new Cake(1);
 Cake a2 = new Cake(2);
 Cake a3 = new Cake(3);

 // To dispose the objects a2 and a3
 a2 = a3 = null;
 System.gc(); // Invoke the Java garbage collector

11

 }
}

class Cake extends Object {
 private int id;

 public Cake(int id) {
 this.id = id;
 System.out.println("Cake object " + id + " is created");
 }

 protected void finalize() throws java.lang.Throwable {
 super.finalize();
 System.out.println("Cake object " + id + " is disposed");
 }
}

Sample Output

Cake object 1 is created
Cake object 2 is created
Cake object 3 is created
Cake object 2 is disposed
Cake object 3 is disposed

Line 8 assigns null to a2 and a3. The objects previously
referenced by a2 and a3 are no longer accessible. Therefore,
they are garbage. System.gc() in line 9 requests the garbage
collector to be invoked to reclaim space from all discarded
objects. Normally you don’t need to invoke this method
explicitly, because the JVM automatically invokes it
whenever necessary. The finalize method on the objects a2
and a3 are invoked by the garbage collector. When the
program terminates, a1 also becomes garbage, and a1’s
finalize method is then invoked. Since the program has
already exited, no message is displayed on the console.

Line 22 invokes the finalize() method in the superclass.
This is a good practice to ensure that the finalization
operations defined in the superclass are carried out.

4 The clone Method
Sometimes you need to make a copy of an object. Mistakenly,
you might use the assignment statement, as follows:

newObject = someObject;

This statement does not create a duplicate object. It simply
assigns the reference of someObject to newObject. To create

12

a new object with separate memory space, use the clone()
method:

newObject = someObject.clone();
This statement copies someObject to a new memory location
and assigns the reference of the new object to newObject.
For example,

java.util.Date date = new java.util.Date();
java.util.Date date1 = (java.util.Date)(date.clone());

creates a new Date object, date, and its clone date1. Note
that date.equals(date1) is true, but date == date1 is false.

NOTE
Not all objects can be cloned. For an object to
be cloneable, its class must implement the
java.lang.Cloneable interface, which is
introduced in §10.4.4, “The Cloneable
Interface.”

TIP
An array is treated as an object in Java and is
an instance of the Object class. The clone
method can also be used to copy arrays. The
following statement uses the clone method to
copy the sourceArray of the int[] type to the
targetArray:

int[] targetArray = (int[])sourceArray.clone();

Since the return type of the clone method is
Object, (int[]) is used to cast it to the int[]
type.

5 The getClass Method

A class must be loaded in order to be used. When the JVM
loads the class, it creates an object that contains the
information about the class, such as class name,
constructors, and methods. This object is an instance of
java.lang.Class. It is referred to as a meta-object in this
book, because it describes the information about the class.

Through the meta-object, you can discover the information
about the class at runtime. Every object can use the
getClass() method to return its meta-object. For example,
the following code

13

Object obj = new Object();
Class metaObject = obj.getClass();

System.out.println("Object obj's class is "
 + metaObject.getName());

displays

Object obj's class is java.lang.Object

NOTE: There is only one meta-object for a class.
Every object has a meta-object. If two objects
were created from the same class, their meta-
objects are the same.

