

8

Supplement: How Operators and Operands are Evaluated in Java
For Introduction to Java Programming

By Y. Daniel Liang

The text introduces operator precedence and associativity.
This supplement goes into more details on how operators and
operands are evaluated in Java.

1 Operator Precedence and Associativity

Operator precedence and associativity determine the order in
which operators are evaluated. Suppose that you have this
expression:

3 + 4 * 4 > 5 * (4 + 3) – 1

What is its value? What is the execution order of the
operators? Arithmetically, the expression in the parentheses
is evaluated first. (Parentheses can be nested, in which
case the expression in the inner parentheses is executed
first.) When evaluating an expression without parentheses,
the operators are applied according to the precedence rule
and the associativity rule. The precedence rule defines
precedence for operators, as shown in Table 1, which
contains the operators you have learned so far. Operators
are listed in decreasing order of precedence from top to
bottom. Operators with the same precedence appear in the
same group. (See Appendix C, "Operator Precedence Chart,"
for a complete list of Java operators and their precedence.)

Table 1
Operator Precedence Chart

Precedence Operator

var++ and var-- (Postfix)
+, - (Unary plus and minus), ++var and --var (Prefix)
(type) (Casting)
! (Not)
*, /, % (Multiplication, division, and remainder)
+, - (Binary addition and subtraction)
<, <=, >, >= (Comparison)
==, != (Equality)
^ (Exclusive OR)
&& (AND)
|| (OR)
=, +=, -=, *=, /=, %= (Assignment operator)

If operators with the same precedence are next to each
other, their associativity determines the order of
evaluation. All binary operators except assignment operators
are left-associative. For example, since + and – are of the
same precedence and are left-associative, the expression

a - b + c - d

equivalent ((a - b) + c) - d

9

Assignment operators are right-associative. Therefore, the
expression

a = b += c = 5

equivalent a = (b += (c = 5))

Suppose a, b, and c are 1 before the assignment; after the
whole expression is evaluated, a becomes 6, b becomes 6, and
c becomes 5. Note that left associativity for the assignment
operator would not make sense.

Arithmetically, the expression 3 + 4 * 4 > 5 * (4 + 3) - 1
is evaluated as shown in Figure 1a. This evaluation is known
as the arithmetic evaluation.

3 + 4 * 4 > 5 * (4 + 3) - 1

3 + 4 * 4 > 5 * 7 – 1

3 + 16 > 5 * 7 – 1

3 + 16 > 35 – 1

19 > 35 – 1

19 > 34

false

 (1) inside parentheses first

 (2) multiplication

 (3) multiplication

 (4) addition

 (5) subtraction

 (6) greater than

3 + 4 * 4 > 5 * (4 + 3) - 1

3 + 16 > 5 * (4 + 3) - 1

19 > 5 * (4 + 3) - 1

19 > 5 * 7 - 1

19 > 35 – 1

19 > 34

false

 (1) 4 * 4 is evaluated first.

 (2) 3 + 16 is evaluated.

 (3) 4 + 3 is evaluated.

 (4) 5 * 7 is evaluated.

 (5) 35 – 1 is evaluated.

 (6) 19 > 34 is evaluated.

 (a) (b)

Figure 1
(a) The expression is evaluated arithmetically. (b) The
expression is evaluated in Java.

However, in Java, the operators are evaluated from left to right as long
as it does not violate the precedence and associativity. This is known
as the Java expression evaluation in contrast to the arithmetical
evaluation. In Java, the expression 3 + 4 * 4 > 5 * (4 + 3) - 1 in
Figure 3.5(a) is evaluated as shown in Figure 3.5(b). Java expression
evaluation is equivalent to the arithmetic evaluation. Java expression
evaluation is easier to implement and more efficient to execute.

Here are two more examples. In the expression 1 + 2 + 3 * 4, 1 + 2 is
evaluated before 3 * 4, as shown in Figure 2a. In the expression 1 + 3 *
4, 3 * 4 is evaluated first, and then 1 + 12 is evaluated, as shown in
Figure 2b.

10

1 + 2 + 3 * 4

3 + 3 * 4

3 + 12

 (1) 1 + 2 is evaluated

 (2) 3 * 4 is evaluated

 (3) 3 + 12 is evaluated

1 + 3 * 4

1 + 12

 (1) 3 * 4 is evaluated

 (2) 1 + 12 is evaluated

 (a) (b)
Figure 2
The expression is evaluated in Java.

TIP
You can use parentheses to force an evaluation
order as well as to make a program easy to read.
Use of redundant parentheses does not slow down
the execution of the Java expression.

2 Operand Evaluation Order

The precedence and associativity rules specify the order of
the operators but not the order in which the operands of a
binary operator are evaluated. Operands are evaluated
strictly from left to right in Java. The left-hand operand
of a binary operator is evaluated before any part of the
right-hand operand is evaluated. This rule takes precedence
over any other rules that govern expressions. Consider this
expression:

a + b * (c + 10 * d) / e

a, b, c, d, and e are evaluated in this order. If no
operands have side effects that change the value of a
variable, the order of operand evaluation is irrelevant.
Interesting cases arise when operands do have a side effect.
For example, x becomes 1 in the following code because a is
evaluated to 0 before ++a is evaluated to 1.

int a = 0;
int x = a + (++a);

But x becomes 2 in the following code because ++a is
evaluated to 1, then a is evaluated to 1.

int a = 0;
int x = ++a + a;

The order for evaluating operands takes precedence over the
operator precedence rule. In the former case, (++a) has

11

higher precedence than addition (+), but since a is a left-
hand operand of the addition (+), it is evaluated before any
part of its right-hand operand (e.g., ++a in this case).

NOTE:

The order of evaluating operands does not matter
if the expression does not have the ++ and --
operators. The ++ and -- operators can have side
effects that change the value of a variable in
an expression. So, to avoid errors, do not use
these operators in expressions that modify
multiple variables or the same variable multiple
times.

