

1

Supplement: Extended Discussion on Overriding vs.
Overloading

For Introduction to Java Programming
By Y. Daniel Liang

You have learned about overloading methods in Chapter 5.
Overloading a method is a way to provide more than one
method with the same name but with different signatures to
distinguish them. To override a method, the method must be
defined in the subclass using the same signature and same
return type as in its superclass.

Let us use an example to show the differences between
overriding and overloading. In (a), the method p(int i) in
class A overrides the same method defined in class B.
However, in (b), the method p(double i) in class A and the
method p(int i) in class B are two overloaded methods. The
method p(int i) in class B is inherited in A.

 public class Test {
 public static void main(String[] args) {
 A a = new A();
 a.p(10);
 }
}

class B {
 public void p(int i) {
 }
}

class A extends B {
 // This method overrides the method in B
 public void p(int i) {
 System.out.println(i);
 }
}

public class Test {
 public static void main(String[] args) {
 A a = new A();
 a.p(10);
 }
}

class B {
 public void p(int i) {
 }
}

class A extends B {
 // This method overloads the method in B
 public void p(double i) {
 System.out.println(i);
 }
}

 (a) (b)

When you run the Test class in (a), a.p(10) invokes the
p(int i) method defined in class A, so the program displays
10. When you run the Test class in (b), a.p(10) invokes the
p(int i) method defined in class B, so nothing is printed.

NOTE
You can override a method with a compatible
return type. The new type must be the same type
or a subtype of the original type. For example,
the following code in (a) is correct, but it is
wrong in (b).

2

 public class Test {
 public static void main(String[] args) {
 A a = new A();
 System.out.println(a.getValue());
 }
}

class B {
 public Object getValue() {
 return "Any object";
 }
}

class A extends B {
 public String getValue() {
 return "A string";
 }
}

public class Test {
 public static void main(String[] args) {
 A a = new A();
 System.out.println(a.getValue());
 }
}

class B {
 public String getValue() {
 return "Any object";
 }
}

class A extends B {
 public Object getValue() {
 return "A string";
 }
}

 (a) Compatible type (b) Incompatible type

