

© Copyright Y. Daniel Liang, 2005
1

Supplement: Pluggable Look and Feel
For Introduction to Java Programming

By Y. Daniel Liang

Lightweight components consume fewer resources and can be
transparent, but they lack the AWT's platform-specific look-
and-feel advantage. To address this problem, a new pluggable
look-and-feel feature was introduced in Java.
The pluggable look-and-feel feature lets you design a single
set of GUI components that automatically has the look-and-
feel of any OS platform. The implementation of this feature
is independent of the underlying native GUI, yet it can
imitate the native behavior of the native GUI.
Currently, Java supports the following three look-and-feel
styles:

 Metal

 Motif

 Windows

To see an example that demonstrates these three styles,
change the directory to c:\book, and type the following
command at the DOS prompt: java –jar SimpleExample.jar

Figure 1 shows a sample run of the program.

Figure 1

The SimpleExample demonstrates three look-and-feel styles.

The Metal style, also known as the Java style, gives you a
consistent look regardless of operating system. The Windows
style is currently only available on Windows due to Windows
copyright restrictions. The Motif style is used on Unix
operating systems.
The javax.swing.UIManager class manages the look-and-feel of
the user interface. You can use one of the following three
methods to set the look-and-feel for Metal, Motif, or

Metal

Motif

Windows

© Copyright Y. Daniel Liang, 2005
2

Windows:
UIManager.setLookAndFeel
 (UIManager.getCrossPlatformLookAndFeelClassName());
UIManager.setLookAndFeel
 (new com.sun.java.swing.plaf.motif.MotifLookAndFeel());
UIManager.setLookAndFeel
 (new com.sun.java.swing.plaf.windows.WindowsLookAndFeel());

The setLookAndFeel method throws
UnsupportedLookAndFeelException, so you have to put the
method inside a try-catch block for it to compile. To ensure
that the setting takes effect, the setLookAndFeel method
should be executed before any of the components are
instantiated. Thus, you can put the code in a static block,
as shown below:

 static {
 try {

 // Set a look-and-feel, e.g.,

 // UIManager.setLookAndFeel

 // (UIManager.getCrossPlatformLookAndFeelClassName());

 }
 catch (UnsupportedLookAndFeelException ex) {}
 }

Static initialization blocks are executed when the class is
loaded. For more information on static initialization
blocks, please refer to Supplement III.J, “Initialization
Blocks.”

