

8

Supplement: Regular Expressions
For Introduction to Java Programming

By Y. Daniel Liang

Often you need to write the code to validate user input such
as to check whether the input is a number, a string with all
lowercase letters, or a social security number. How do you
write this type of code? A simple and effective way to
accomplish this task is to use the regular expression.

A regular expression (abbreviated regex) is a string that
describes a pattern for matching a set of strings. Regular
expression is a powerful tool for string manipulations. You
can use regular expressions for matching, replacing, and
splitting strings.

1 Matching Strings

Let us begin with the matches method in the String class. At
first glance, the matches method is very similar to the
equals method. For example, the following two statements
both evaluate to true.

"Java".matches("Java");
"Java".equals("Java");

However, the matches method is more powerful. It can match
not only a fixed string, but also a set of strings that
follow a pattern. For example, the following statements all
evaluate to true.

"Java is fun".matches("Java.*")
"Java is cool".matches("Java.*")
"Java is powerful".matches("Java.*")

"Java.*" in the preceding statements is a regular
expression. It describes a string pattern that begins with
Java followed by any zero or more characters. Here, the
substring .* matches any zero or more characters.

2 Regular Expression Syntax

A regular expression consists of literal characters and
special symbols. Table 1 lists some frequently used syntax
for regular expressions.

Table 1: Frequently Used Regular Expressions

9

Regular Expression Matches Example

x a specified character x Java matches Java
. any single character Java matches J..a
(ab|cd) ab or cd ten matches t(en|im)
[abc] a, b, or c Java matches Ja[uvwx]a
[^abc] any character except Java matches Ja[^ars]a

 a, b, or c
[a-z] a through z Java matches [A-M]av[a-d]
[^a-z] any character except Java matches Jav[^b-d]
 a through z
[a-e[m-p]] a through e or Java matches
 m through p [A-G[I-M]]av[a-d]
[a-e&&[c-p]] intersection of a-e Java matches
 with c-p [A-P&&[I-M]]av[a-d]

\d a digit, same as [0-9] Java2 matches "Java[\\d]"
\D a non-digit $Java matches "[\\D][\\D]ava"
\w a word character Java1 matches "[\\w]ava[\\w]"
\W a non-word character $Java matches "[\\W][\\w]ava"
\s a whitespace character "Java 2" matches "Java\\s2"
\S a non-whitespace char Java matches "[\\S]ava"

p* zero or more Java matches "a*"
 occurrences of pattern p bbb matches "a*"
p+ one or more Java matches "a+"
 occurrences of pattern p bbb matches "a+"
p? zero or one Java matches "J?Java"
 occurrence of pattern p ava matches "J?ava"
p{n} exactly n Java matches "a{1}"
 occurrences of pattern p Java does not match "a{2}"
p{n,} at least n Java matches "a{1,}"
 occurrences of pattern p Java does not match "a{2,}"
p{n,m} between n and m Java matches "a{1,9}"
 occurrences (inclusive) Java does not match "a{2,9}"

NOTE
Backslash is a special character that starts an
escape sequence in a string. So you need to use
"\\d" in Java to represent \d.

NOTE
Recall that a whitespace (or a whitespace
character) is any character which does not
display itself but does take up space. The
characters ' ', '\t', '\n', '\r', '\f' are
whitespace characters. So \s is the same as [
\t\n\r\f], and \S is the same as [^ \t\n\r\f\v].

NOTE
A word character is any letter, digit, or the
underscore character. So \w is the same as [a-
z[A-Z][0-9]_] or simply [a-zA-Z0-9_], and \W is
the same as [^a-zA-Z0-9_].

NOTE

10

The last six entries *, +, ?, {n}, {n,}, and {n,
m} in Table 1 are called quantifiers that
specify how many times the pattern before a
quantifier may repeat. For example, A* matches
zero or more A’s, A+ matches one or more A’s, A?
matches zero or one A’s, A{3} matches exactly
AAA, A{3,} matches at least three A’s, and
A{3,6} matches between 3 and 6 A’s. * is the
same as {0,}, + is the same as {1,}, and ? is the
same as {0,1}.

CAUTION
Do not use spaces in the repeat quantifiers. For
example, A{3,6} cannot be written as A{3, 6}
with a space after the comma.

NOTE
You may use parentheses to group patterns. For
example, (ab){3} matches ababab, but ab{3}
matches abbb.

Let us use several examples to demonstrate how to construct
regular expressions.

Example 1: The pattern for social security numbers is xxx-
xx-xxxx, where x is a digit. A regular expression for social
security numbers can be described as

[\\d]{3}-[\\d]{2}-[\\d]{4}

For example,

"111-22-3333".matches("[\\d]{3}-[\\d]{2}-[\\d]{4}") returns true.

"11-22-3333".matches("[\\d]{3}-[\\d]{2}-[\\d]{4}") returns false.

Example 2: An even number ends with digits 0, 2, 4, 6, or 8.
The pattern for even numbers can be described as

[\\d]*[02468]

For example,

"123".matches("[\\d]*[02468]") returns false.

"122".matches("[\\d]*[02468]") returns true.

Example 3: The pattern for telephone numbers is (xxx) xxx-
xxxx, where x is a digit and the first digit cannot be zero.
A regular expression for telephone numbers can be described
as

\\([1-9][\\d]{2}\\) [\\d]{3}-[\\d]{4}

11

Note that the parentheses symbols (and) are special
characters in a regular expression for grouping patterns. To
represent a literal (or) in a regular expression, you have
to use \\(and \\).

For example,

"(912) 921-2728".matches("\\([1-9][\\d]{2}\\) [\\d]{3}-[\\d]{4}") returns true.

"921-2728".matches("\\([1-9][\\d]{2}\\) [\\d]{3}-[\\d]{4}") returns false.

Example 4: Suppose the last name consists of at most 25
letters and the first letter is in uppercase. The pattern
for a last name can be described as

[A-Z][a-zA-Z]{1,24}

Note that you cannot have arbitrary whitespace in a regular
expression. For example, [A-Z][a-zA-Z]{1, 24} would be
wrong.

For example,

"Smith".matches("[A-Z][a-zA-Z]{1,24}") returns true.

"Jones123".matches("[A-Z][a-zA-Z]{1,24}") returns false.

Example 5: Java identifiers are defined in §2.3,
“Identifiers.”

 An identifier must start with a letter, an underscore
(_), or a dollar sign ($). It cannot start with a
digit.

 An identifier is a sequence of characters that consists
of letters, digits, underscores (_), and dollar signs
($).

The pattern for identifiers can be described as

[a-zA-Z_$][\\w$]*

Example 6: What strings are matched by the regular
expression "Welcome to (Java|HTML)"? The answer is Welcome
to Java or Welcome to HTML.

Example 7: What strings are matched by the regular
expression ".*"? The answer is any string.

3 Replacing and Splitting Strings
The matches method in the String class returns true if the
string matches the regular expression. The String class also
contains the replaceAll, replaceFirst, and split methods for
replacing and splitting strings, as shown in Figure 1.

12

java.lang.String

+matches(regex: String): boolean

+replaceAll(regex: String, replacement:
String): String

+replaceFirst(regex: String,
replacement: String): String

+split(regex: String): String[]

+split(regex: String, limit: int): String[]

Returns true if this string matches the pattern.

Returns a new string that replaces all matching substrings with
the replacement.

Returns a new string that replaces the first matching substring
with the replacement.

Returns an array of strings consisting of the substrings split by
the matches.

Same as the preceding split method except that the limit
parameter controls the number of times the pattern is applied.

Figure 1
The String class contains the methods for matching,
replacing, and splitting strings using regular expressions.

The replaceAll method replaces all matching substring and
the replaceFirst method replaces the first matching
substring. For example, the following code

System.out.println("Java Java Java".replaceAll("v\\w", "wi"));

displays

Jawi Jawi Jawi

The following code

System.out.println("Java Java Java".replaceFirst("v\\w", "wi"));

displays

Jawi Java Java

There are two overloaded split methods. The split(regex)
method splits a string into substrings delimited by the
matches. For example, the following statement

String[] tokens = "Java1HTML2Perl".split("\\d");

splits string "Java1HTML2Perl" into Java, HTML, and Perl and
saved in tokens[0], tokens[1], and tokens[2].

In the split(regex, limit) method, the limit parameter
determines how many times the pattern is matched. If limit
<= 0, split(regex, limit) is same as split(regex). If limit
> 0, the pattern is matched at most limit – 1 times. Here
are some examples:

"Java1HTML2Perl".split("\\d", 0); splits into Java, HTML, Perl

"Java1HTML2Perl".split("\\d", 1); splits into Java1HTML2Perl

"Java1HTML2Perl".split("\\d", 2); splits into Java, HTML2Perl

"Java1HTML2Perl".split("\\d", 3); splits into Java, HTML, Perl

"Java1HTML2Perl".split("\\d", 4); splits into Java, HTML, Perl

"Java1HTML2Perl".split("\\d", 5); splits into Java, HTML, Perl

13

NOTE:
By default, all the quantifiers are greedy. This
means that they will match as many occurrences
as possible. For example, the following
statement displays JRvaa, since the first match
is aaa.

System.out.println("Jaaavaa".replaceFirst("a+", "R"));

You can change a qualifier’s default behavior by
appending a question mark (?) after it. The
quantifier becomes reluctant, which means that
it will match as few occurrences as possible.
For example, the following statement displays
JRaavaa, since the first match is a.

System.out.println("Jaaavaa".replaceFirst("a+?", "R"));

