
Supplement: Case Study: Sudoku

For Introduction to Java Programming

By Y. Daniel Liang

This case study can be presented after Chapter 7,
“Multidimensional Arrays.”

This book teaches you how to program using a wide variety of
problems with various levels of difficulty. We use simple,
short, and stimulating examples to introduce programming and
problem-solving techniques and use interesting and
challenging examples to motivate students in programming.
This supplement presents an interesting problem of a sort
that appears in the newspaper every day. It is a number-
placement puzzle, commonly known as Sudoku.

1 Problem Description
<Side Remark: fixed cells>
<Side Remark: free cells>
Sudoku is a 9×9 grid divided into smaller 3×3 boxes (also
called regions or blocks), as shown in Figure 1(a). Some
cells, called fixed cells, are populated with numbers from
1 to 9. The objective is to fill the empty cells, also
called free cells, with numbers 1 to 9 so that every row,
every column, and every 3×3 box contains the numbers 1 to
9, as shown in Figure 1(b).

 5 3 7

 6 1 9 5

 9 8 6

 8 6 3

 4 8 3 1

 7 2 6

 6

 4 1 9 5

 8 7 9

 5 3 4 6 7 8 9 1 2

 6 7 2 1 9 5 3 4 8

 1 9 8 3 4 2 5 6 7

 8 5 9 7 6 1 4 2 3

 4 2 6 8 5 3 7 9 1

 7 1 3 9 2 4 8 5 6

 9 6 1 5 3 7 2 8 4

 2 8 7 4 1 9 6 3 5

 3 4 5 2 8 6 1 7 9

 (a) Input (b) Output
Figure 1

(b) is the solution to the Sudoku puzzle in (a).

<Side Remark: representing a grid>
For convenience, we use value 0 to indicate a free cell, as
shown in Figure 2(a). The grid can be naturally represented
using a two-dimensional array, as shown in Figure 2(a).

 Solution

 5 3 0 0 7 0 0 0 0

 6 0 0 1 9 5 0 0 0

 0 9 8 0 0 0 0 6 0

 8 0 0 0 6 0 0 0 3

 4 0 0 8 0 3 0 0 1

 7 0 0 0 2 0 0 0 6

 0 6 0 0 0 0 0 0 0

 0 0 0 4 1 9 0 0 5

 0 0 0 0 8 0 0 7 9

int[][] grid =

 {{5, 3, 0, 0, 7, 0, 0, 0, 0},

 {6, 0, 0, 1, 9, 5, 0, 0, 0},

 {0, 9, 8, 0, 0, 0, 0, 6, 0},

 {8, 0, 0, 0, 6, 0, 0, 0, 3},

 {4, 0, 0, 8, 0, 3, 0, 0, 1},

 {7, 0, 0, 0, 2, 0, 0, 0, 6},

 {0, 6, 0, 0, 0, 0, 2, 8, 0},

 {0, 0, 0, 4, 1, 9, 0, 0, 5},

 {0, 0, 0, 0, 8, 0, 0, 7, 9}

 };

 (a) (b)

Figure 2
A grid can be represented using a two-dimensional
array.

2 Problem-Solving Strategy
How do you solve this problem? An intuitive approach to
solve this problem is to employ the following three rules:

Rule 1: Fill in free cells from the first to the last.
Rule 2: Fill in a smallest number possible.
Rule 3: If no number can fill in a free cell, backtrack.

For example, you can fill 1 into grid[0][2], 2 into
grid[0][3], 4 into grid[0][5], 8 into grid[0][6], and 9
into grid[0][7], as shown in Figure 3(a).

 5 3 1 2 7 4 8 9

 6 1 9 5

 9 8 6

 8 6 3

 4 8 3 1

 7 2 6

 6

 4 1 9 5

 8 7 9

 5 3 1 2 7 4 9 8

 6 1 9 5

 9 8 6

 8 6 3

 4 8 3 1

 7 2 6

 6

 4 1 9 5

 8 7 9

 (a) (b)
Figure 3

The program attempts to fill in free cells.

<Side Remark: backtrack>
Now look at grid[0][8]. There is no possible value to fill
in this cell. You need to backtrack to the previous free
cell at grid[0][7] and reset its value. Since grid[0][7] is

already 9, no new value is possible. So you have to
backtrack to its previous free cell at grid[0][6] and
change its value to 9. Continue to move forward to set
grid[0][7] to 8, as shown in Figure 3(b). Now there is
still no possible value for grid[0][8]. Backtrack to
grid[0][7], no possible new value for this cell. Backtrack
to grid[0][6], no possible new value for this cell.
Backtrack to grid[0][5] and change it to 6. Now continue to
move forward.

The search moves forward and backward continuously until
one of the following two cases arises:

 All free cells are filled. A solution is found.
 The search is backtracked to the first free cell with

no new possible value. The puzzle has no solution.

Pedagogical NOTE
<side remark: Sudoku animation>

Follow the link
www.cs.armstrong.edu/liang/animation/SudokuAnim
ation.html to see how the search progresses. As
shown in Figure 4(a), number 1 is placed in the
first row and last column. This number is
invalid, so, the next value 2 is placed in
Figure 4(b). This number is still invalid, so,
the next value 3 is placed in Figure 4(c). The
simulation displays all the search steps.

Figure 4

The animation tool enables you to observe how the
search works for solving a Sudoku puzzle.

***End NOTE

3 Program Design
The program can be designed as follows in (a) and further
refined with methods in (b):

Read the input for a puzzle;
if (the grid is not valid)
 Report the grid not valid;
else {
 Search for a solution;
 if (solution found)

Display the solution;
 else
 Report no solution;
}

(a)

int[][] grid =
 readAPuzzle(grid);
if (!isValid(grid))
 Report the grid not valid;
else {
 if (search(grid))

prindGrid(grid);
 else
 Report no solution;
}

(b)

The readAPuzzle method reads a Sudoku puzzle from the
console into grid. The printGrid method displays the
contents in grid to the console. The isValid method checks
whether the grid is valid. These methods are easy to
implement. We now turn our attention to the search method.

4 Search Algorithm
To better facilitate search on free cells, the program
stores free cells in a two-dimensional array, as shown 8.a.
Each row in the array has two columns, which indicate the
subscripts of the free cell in the grid. For example,
{freeCellList[0][0], freeCellList[0][1]} (i.e., {0, 2}) is
the subscript for the first free cell grid[0][2] in the
grid and {freeCellList[25][0], freeCellList[25][1]} (i.e.,
{4, 4}) is the subscript for free cell grid[4][4] in the
grid, as shown in Figure 5.

 5 3 7

 6 1 9 5

 9 8 6

 8 6 3

 4 8 3 1

 7 2 6

 6

 4 1 9 5

 8 7 9

 0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

int[][] freeCellList =

 {{0, 2}, {0, 3}, {0, 5}, {0, 6}, {0, 7}, {0, 8},

 {1, 1}, {1, 2}, {1, 6}, {1, 7}, {1, 8}, {2, 0},

 {2, 3}, {2, 4}, {2, 5}, {2, 6}, {2, 8}, {3, 1},

 {3, 2}, {3, 3}, {3, 5}, {3, 6}, {3, 7}, {4, 1},

 {4, 2}, {4, 4}, {4, 6}, {4, 7}, {5, 1}, {5, 2},

 {5, 3}, {5, 5}, {5, 6}, {5, 7}, {6, 0}, {6, 2},

 {6, 3}, {6, 4}, {6, 5}, {6, 8}, {7, 0}, {7, 1},

 {7, 2}, {7, 6}, {7, 7}, {8, 0}, {8, 1}, {8, 2},

 {8, 3}, {8, 5}, {8, 6}

 };

Refined

Figure 5
freeCellList is a two-dimensional array representation
for the free cells.

The search starts from the first free cell with k = 0,
where k is the index of the current free cell being
considered in the free cell list, as shown in Figure 6. It
fills a smallest possible valid value in the current free
cell and then moves forward to consider the next cell. If
no valid value can be found for the current free cell, the
search backtracks to the preceding free cell. This process
continues until all free cells are filled with valid value
(a solution found) or search backtracks to the first free
cell with no solution.

 5 3 7

 6 1 9 5

 9 8 6

 8 6 3

 4 8 3 1

 7 2 6

 6

 4 1 9 5

 8 7 9

freeCellList[0] freeCellList[1] freeCellList[2] …
 {0, 2} {0, 3} {0, 5}

freeCellList

initially k is 0 k

A solution is
found if k
reaches the endk moves forward

and backward

freeCellList[0] is {0, 2},
freeCellList[1] is {0, 3},
freeCellList[2] is {0, 5},
etc.

Figure 6

The search attempts to fill appropriate values in free
cells.

The search algorithm can be described as follows:

Step 1: (Initialization) Obtain a freeCellList from a grid,
as shown in Figure 5. Let k denote the index in
freeCellList with k initially 0, as shown in Figure 6.

Repeatedly perform Steps 2-4 until search ends with a
solution or no solution
{

Step 2: Let grid[i][j] be the current free cell being
considered, where i = freeCellList[k][0] and j =
freeCellList[k][1].

Step 3: If grid[i][j] is 0, fill it with 1.

Step 4: Consider three cases:

<Side Remark line 89: solution found>

Case 1: grid[i][j] is valid. If k is the last index in
freeCellList, a solution is found. Otherwise,
search moves forward with k = k + 1.

Case 2: grid[i][j] is invalid and grid[i][j] < 9. Set
a new value for the free cell with grid[i][j] =
grid[i][j] + 1.

<Side Remark line 89: no solution>
Case 3: grid[i][j] is invalid and grid[i][j] is 9. If

k = 0, search ends with no solution. Otherwise
backtracks with k = k – 1, reset i =
freeCellList[k][0] and j = freeCellList[k][1],
and continue to backtrack if grid[i][j] is 9.
When grid[i][j] < 9, set grid[i][j] = grid[i][j]
+ 1.

}

5 Implementation
Listing 1 gives the source code for the program.

Listing 1 Sudoku.java

PD: Please add line numbers in the following code
<Side Remark line 6: read input>
<Side Remark line 8: input valid?>
<Side Remark line 10: search>
<Side Remark line 12: print result>
<Side Remark line 19: read input>
<Side Remark line 29: return grid>
<Side Remark line 33: get free-cell list>
<Side Remark line 35: count free cells>
<Side Remark line 42: create free cell list>
<Side Remark line 55: print grid>
<Side Remark line 64: search a solution>
<Side Remark line 70: continuous search>
<Side Remark line 74: start with 1>
<Side Remark line 76: is valid?>
<Side Remark line 78: found>
<Side Remark line 81: to next free cell>
<Side Remark line 86: increase cell value>
<Side Remark line 91: no solution>
<Side Remark line 93: reset cell value>
<Side Remark line 94: backtrack>
<Side Remark line 107: check valid>
<Side Remark line 109: check row>
<Side Remark line 114: check column>
<Side Remark line 119: check box>
<Side Remark line 128: valid grid?>

import java.util.Scanner;

public class Sudoku {

 public static void main(String[] args) {

 // Read a Sudoku puzzle

 int[][] grid = readAPuzzle();

 if (!isValid(grid))

 System.out.println("Invalid input");

 else if (search(grid)) {

 System.out.println("The solution is found:");

 printGrid(grid);

 }

 else

 System.out.println("No solution");

 }

 /** Read a Sudoku puzzle from the keyboard */

 public static int[][] readAPuzzle() {

 // Create a Scanner

 Scanner input = new Scanner(System.in);

 System.out.println("Enter a Sudoku puzzle:");

 int[][] grid = new int[9][9];

 for (int i = 0; i < 9; i++)

 for (int j = 0; j < 9; j++)

 grid[i][j] = input.nextInt();

 return grid;

 }

 /** Obtain a list of free cells from the puzzle */

 public static int[][] getFreeCellList(int[][] grid) {

 // Determine the number of free cells

 int numberOfFreeCells = 0;

 for (int i = 0; i < 9; i++)

 for (int j = 0; j < 9; j++)

 if (grid[i][j] == 0)

 numberOfFreeCells++;

 // Store free cell positions into freeCellList

 int[][] freeCellList = new int[numberOfFreeCells][2];

 int count = 0;

 for (int i = 0; i < 9; i++)

 for (int j = 0; j < 9; j++)

 if (grid[i][j] == 0) {

 freeCellList[count][0] = i;

 freeCellList[count++][1] = j;

 }

 return freeCellList;

 }

 /** Print the values in the grid */

 public static void printGrid(int[][] grid) {

 for (int i = 0; i < 9; i++) {

 for (int j = 0; j < 9; j++)

 System.out.print(grid[i][j] + " ");

 System.out.println();

 }

 }

 /** Search for a solution */

 public static boolean search(int[][] grid) {

 int[][] freeCellList = getFreeCellList(grid); // Free cells

 if (freeCellList.length == 0)

 return true; // "No free cells");

 int k = 0; // Start from the first free cell

 while (true) {

 int i = freeCellList[k][0];

 int j = freeCellList[k][1];

 if (grid[i][j] == 0)

 grid[i][j] = 1; // Fill the free cell with number 1

 if (isValid(i, j, grid)) {

 if (k + 1 == freeCellList.length) { // No more free cells

 return true; // A solution is found

 }

 else { // Move to the next free cell

 k++;

 }

 }

 else if (grid[i][j] < 9) {

 // Fill the free cell with the next possible value

 grid[i][j] = grid[i][j] + 1;

 }

 else { // free cell grid[i][j] is 9, backtrack

 while (grid[i][j] == 9) {

 if (k == 0) {

 return false; // No possible value

 }

 grid[i][j] = 0; // Reset to free cell

 k--; // Backtrack to the preceding free cell

 i = freeCellList[k][0];

 j = freeCellList[k][1];

 }

 // Fill the free cell with the next possible value,

 // search continues from this free cell at k

 grid[i][j] = grid[i][j] + 1;

 }

 }

 }

 /** Check whether grid[i][j] is valid in the grid */

 public static boolean isValid(int i, int j, int[][] grid) {

 // Check whether grid[i][j] is valid at the i's row

 for (int column = 0; column < 9; column++)

 if (column != j && grid[i][column] == grid[i][j])

 return false;

 // Check whether grid[i][j] is valid at the j's column

 for (int row = 0; row < 9; row++)

 if (row != i && grid[row][j] == grid[i][j])

 return false;

 // Check whether grid[i][j] is valid in the 3 by 3 box

 for (int row = (i / 3) * 3; row < (i / 3) * 3 + 3; row++)

 for (int col = (j / 3) * 3; col < (j / 3) * 3 + 3; col++)

 if (row != i && col != j && grid[row][col] == grid[i][j])

 return false;

 return true; // The current value at grid[i][j] is valid

 }

 /** Check whether the fixed cells are valid in the grid */

 public static boolean isValid(int[][] grid) {

 for (int i = 0; i < 9; i++)

 for (int j = 0; j < 9; j++)

 if (grid[i][j] < 0 || grid[i][j] > 9 ||

 (grid[i][j] != 0 && !isValid(i, j, grid)))

 return false;

 return true; // The fixed cells are valid

 }

}

<Output>
Enter a puzzle:
0 6 0 1 0 4 0 5 0
0 0 8 3 0 5 6 0 0
2 0 0 0 0 0 0 0 1
8 0 0 4 0 7 0 0 6
0 0 6 0 0 0 3 0 0
7 0 0 9 0 1 0 0 4
5 0 0 0 0 0 0 0 2
0 0 7 2 0 6 9 0 0
0 4 0 5 0 8 0 7 0

The solution is found:
9 6 3 1 7 4 2 5 8
1 7 8 3 2 5 6 4 9
2 5 4 6 8 9 7 3 1
8 2 1 4 3 7 5 9 6
4 9 6 8 5 2 3 1 7
7 3 5 9 6 1 8 2 4
5 8 9 7 1 3 4 6 2
3 1 7 2 4 6 9 8 5
6 4 2 5 9 8 1 7 3

<End Output>

The program invokes the readAPuzzle() method (line 6) to
read a Sudoku puzzle and return a two-dimensional array
representing a Sudoku grid. There are three possible
outputs from the program:

 The input is invalid (line 9)
 A solution is found (line 11).
 No solution is found (line 15).

<Side Remark: getFreeCellList method>
The getFreeCellList(int[][] grid) method returns a two-
dimensional array storing the free cell positions.
freeCellList[i][j] indicates a free cell at row index i and
column index j. The method first counts the number of free
cells (lines 35-39), then creates the array for storing
free cell positions (lines 42-49).

<Side Remark: search method>
The search(int[][] grid) method starts search from the
first free cell with k = 0 (line 69), where k is the index
of the current free cell being considered in the free cell
list, as shown in Figure 5.

The value in a free cell starts with 1 (line 74). If the
value is valid, the next cell is considered (line 81). If
the value is not valid, its next possible value is
considered (line 86). If the value is already 9, the search
is backtracked (lines 89–97). All the backtracked cells
become free again and their values are reset to 0 (line
93). If the search backtracks to the free cell list at
position k and the current free cell value is not 9,
increase the value by 1 (line 101) and the search
continues.

The search method returns true when the search advances but
no more free cells are left (line 78). A solution is found.

The search returns false when the search is backtracked to
the first cell (line 91) and all possible values are
exhausted for the cell. No solution can be found.

<Side Remark: isValid method>
The isValid(i, j, grid) method checks whether the current
value at grid[i][j] is valid. It checks whether grid[i][j]
appears more than once at row i (lines 109-111), at column
j (lines 114–116), and in the 3×3 box (lines 119–122).

How do you locate all the cells in the same box? For any
grid[i][j], the starting cell of the 3×3 box that contains
it is grid[(i / 3) * 3][(j / 3) * 3], as illustrated in
Figure 6.

For any grid[i][j] in this 3 by 3 box, its starting cell
is grid[3*(i/3)][3*(j/3)] (i.e., grid[0][6]). For
example, for grid[2][8], i=2 and j=8, 3*(i/3)=0 and
3*(j/3) =6.

grid[0][6]

grid[6][3]

For any grid[i][j] in this 3 by 3 box, its
starting cell is grid[3*(i/3)][3*(j/3)]
(i.e., grid[6][3]). For example, for
grid[8][5], i=8 and j=5, 3*(i/3)=6 and
3*(j/3) =3.

Figure 6

The location of the first cell in a 3×3 box determines
the locations of other cells in the box.

With this observation, you can easily identify all the
cells in the box. Suppose grid[r][c] is the starting cell
of a 3×3 box, the cells in the box can be traversed in a
nested loop as follows:

// Get all cells in a 3 by 3 box starting at grid[r][c]

for (int row = r; row < r + 3; row++)

 for (int col = c; col < c + 3; col++)

 // grid[row][col] is in the box

<Side Remark: find one solution>
Note that there may be multiple solutions for an input. But
the program will find one such solution. You may modify the
program to find all solutions in Programming Exercise 7.27.

<Side Remark: input file>
It is cumbersome to enter 81 numbers from the console. When
you test the program, you may store the input in a file,
say sudoku.txt, and run the program using the following
command:

java Sudoku < sudoku.txt

This program is not user friendly. You can improve it by
providing a GUI interface. See Exercise 18.25.

