

© Copyright Y. Daniel Liang, 2005
1

Supplement: Testing Java Programs Using JUnit

For Introduction to Java Programming
By Y. Daniel Liang

JUnit is a simple framework for testing Java programs. You
can download the latest version of JUnit from
http://sourceforge.net/projects/junit/files/. At present,
the latest version is junit-4.10.jar. Download this file and
add it to the classpath as follows:

set CLASSPATH=.;%CLASSPATH%;%JUNIT_HOME%\junit-4.10.jar

To use JUnit, create a test class. By convention, if the
class to be tested is named A, the test class should be
named ATest. A simple template of a test class may look like
this:

package test;

import org.junit.*;

import static org.junit.Assert.*;

public class ATest {

 @Test

 public void m1() {

 // Write a test method

 }

 @Test

 public void m2() {

 // Write another test method

 }

 @Before

 public void setUp() throws Exception {

 // Common objects used by test methods may be set up here

 }

}

To run the test from the console, use the following command:

java org.junit.runner.JUnitCore test.ATest

When this command is executed, JUnitCore controls the
execution of ATest. It first executes the setUp() method to
set up the common objects used for the test, and then
executes test methods m1 and m2 in this order. You may
define multiple test methods if desirable.

The following methods can be used to implement a test
method:

© Copyright Y. Daniel Liang, 2005
2

assertTrue(booleanExpression)
The method reports success if the booleanExpression
evaluates true.

assertEquals(Object, Object)
The method reports success if the two objects are the same
using the equals method.

assertNull(Object)
The method reports success if the object reference passed is
null.

fail(String)
Causes the test to fail and prints out the string.

Here is an example of a test class for testing
java.util.ArrayList.

package test;

import org.junit.*;

import static org.junit.Assert.*;

import java.util.*;

public class ArrayListTest {

 private ArrayList<String> list = new ArrayList<String>();

 @Before

 public void setUp() throws Exception {

 }

 @Test

 public void testInsertion() {

 list.add("Beijing");

 assertEquals("Beijing", list.get(0));

 list.add("Shanghai");

 list.add("Hongkong");

 assertEquals("Hongkong", list.get(list.size() - 1));

 }

 @Test

 public void testDeletion() {

 list.clear();

 assertTrue(list.isEmpty());

 list.add("A");

 list.add("B");

 list.add("C");

 list.remove("B");

 assertEquals(2, list.size());

 }

}

© Copyright Y. Daniel Liang, 2005
3

<Output>

Testsuite: test.ArrayListTest

Setup

Setup

Tests run: 2, Failures: 0, Errors: 0, Time elapsed: 0.172 sec

<End Output>

You can define any number of test methods. In this example,
two test methods testInsertion and testDeletion are defined.
JUnit executes testInsertion and testDeletion in this order.

An IDE like NetBeans and Eclipse can greatly simplify the
process for creating and running test classes. Consider
using NetBeans 6.0. Let us create a class Loan.java for
Listing 9.2 in Chapter 9.

Create a new project named JUnitDemo and class Loan in the
project, as shown in Figure 1. To create a test class for
Loan, right-click Loan in the project pane to display a
context menu. Choose Tools › Create JUnit Test to display a
dialog box, as shown in Figure 2. Check all boxes to
generate LoanTest. LoanTest.java now appears under the Test
Packages node in the test project, as shown in Figure 3.

© Copyright Y. Daniel Liang, 2005
4

Figure 1
A test class can be created automatically in NetBeans.

© Copyright Y. Daniel Liang, 2005
5

Figure 2
You can specify the options for code generation.

© Copyright Y. Daniel Liang, 2005
6

Figure 3
The test class LoanTest is generated.

The automatically generated test class contains the methods
setUpClass(), tearDownClass(), setUp(), and tearDown().
These are the test class life-cycle methods. These methods
are invoked in this order: setUpClass(), setUp(), test
methods, tearDown(), and tearDownClass(). You can implement
these methods to set up classes and objects before the test
and destroy the objects and remove the classes after the
test, if necessary.

NetBeans automatically generates test methods for each
method. You need to modify the code to test the methods in
the class.

