

1

Using Command-Line Arguments

For Introduction to Programming Using Python
By Y. Daniel Liang

You can pass command-line arguments in a Java/C++ program. You
can do the same thing in Python. The arguments passed from a
command line will be stored in sys.argv, which is a list of
strings. Listing 1 gives a simple test program that displays all
the arguments passed from the command line:

Listing 1 Test.py

import sys

for i in range(0, len(sys.argv)):
 print("argv[" + str(i) + "]: " + sys.argv[i])

As shown in Figure 1, the arguments are passed from the command
line separated by space. The Python source code filename is
treated as the first argument in the command line.

Figure 1

The arguments are passed from the command line separated by
spaces.

The arguments must be strings, but they don’t have to appear in
quotes on the command line. The strings are separated by a
space. A string that contains a space must be enclosed in double
quotes. Consider the following command line:

python Test.py "First num" alpha 53

It starts the program with four strings: "Test.py", "First num"
and alpha, and 53, a numeric string, as shown in Figure 2. Note
that 53 is actually treated as a string. You can use "53"
instead of 53 in the command line.

2

Figure 2

The argument must be enclosed in quotes if it contains
spaces.

Listing 2 presents a program that performs binary operations on
integers. The program receives three arguments: an integer
followed by an operator and another integer. For example, to add
two integers, use this command:

python Calculator.py 1 + 2

The program will display the following output:

1 + 2 = 3

Figure 3 shows sample runs of the program.

Figure 3

The program takes three arguments (operand1 operator
operand2) from the command line and displays the expression
and the result of the arithmetic operation.

Here are the steps in the program:

1. Check argv to determine whether three arguments have
been provided in the command line. If not, terminate the
program using sys.exit().

3

2. Perform a binary arithmetic operation on the operands
argv[1] and argv[3] using the operator specified in
argv[2].

Listing 2 Calculator.py

import sys

Check number of strings passed
if len(sys.argv) != 4:
 print("Usage: python Calculator.py operand1 operator
operand2")
 sys.exit()

Determine the operator
if sys.argv[2][0] == '+':
 result = eval(sys.argv[1]) + eval(sys.argv[3])
elif sys.argv[2][0] == '-':
 result = eval(sys.argv[1]) - eval(sys.argv[3])
elif sys.argv[2][0] == '*':
 result = eval(sys.argv[1]) * eval(sys.argv[3])
elif sys.argv[2][0] == '/':
 result = eval(sys.argv[1]) / eval(sys.argv[3])

Display result
print(sys.argv[1] + ' ' + sys.argv[2] + ' ' + sys.argv[3] +
 " = " + str(result))

