

1

Eclipse Python Tutorial

For Introduction to Programming Using Python
By Y. Daniel Liang

This supplement covers the following topics:

 Download and install Java if necessary
 Download and install Eclipse
 Launch Eclipse
 Install Python plug-in for Eclipse
 Add a Python Interpreter
 Create a Python Project
 Create a Python Program
 Run a Python Program
 Debug a Python Program

0 Introduction

This tutorial is for students who want to develop Python
projects using Eclipse. Eclipse is a popular IDE for
developing software. You can use Eclipse for programming in
Java, C++, and Python, or many other languages.

1 Download and Install Java

To use Eclipse, you need to download and install Java, since
Eclipse relies on Java to run. It is very likely that Java
is already installed on your system. If not, download Java
from
http://www.oracle.com/technetwork/java/javase/downloads/inde
x.html. The installation is straightforward.

2 Download and Install Eclipse

Eclipse can be downloaded from
http://www.eclipse.org/downloads/. There are several
versions of Eclipse on the list. Choose Eclipse Classic and
select a version for your platform (i.e., Windows 32-bit,
Windows 64-bit, and Mac). The file downloaded is a ZIP file
(a compressed file). Uncompress it into a directory named
c:\eclipse.

3 Launch Eclipse

Assume that you have installed Eclipse files in c:\eclipse.
To start Eclipse, double-click on the eclipse icon in the
c:\eclipse folder, as shown in Figure 1. The Workspace

2

Launcher window now appears, as shown in Figure 2. Enter c:\
in the Workspace field and click OK to display the Eclipse
UI, as shown in Figure 3. (If the workspace already contains
projects, the projects will be displayed in the UI.)
Workspace is actually a directory that stores your project
files. Click the Workbench icon to display the Eclipse user
interface, as shown in Figure 4.

Figure 1

You can start Eclipse by double-clicking the eclipse
icon from the eclipse installation directory.

Figure 2

The Workspace Launcher lets you choose a directory to
store projects.

3

Figure 3

The Eclipse main window is the command center for the
IDE.

Figure 4

The Eclipse UI is displayed.

4 Install Python Plug-in

Follow the steps below to install Python Plug-in:

1. Choose Help, Eclipse Marketplace to display the
Eclipse Marketplace window, as shown in Figure 5.

2. Under the Search tab, enter Python in the Find field.
You will find the current Python IDL for Eclipse 3.6
or a later higher version.

4

3. Click Install to install it.

Figure 5

You can install plug-ins for Eclipse in the Eclipse
Marketplace window.

5 Create Python Project

Projects are like folders to hold Python files. Before
creating a Python program, you have to first create a
project.

Follow the steps below to create a project:

1. Choose File, New, Project to display the New Project
wizard, as shown in Figure 6.

2. Select PyDev Project and click Next to display the
PyDev Project wizard, as shown in Figure 7. Type
pybook in the Project name field. As you type, the
Directory field becomes c:\pybook.

3. Make sure that you choose Python as project type and
3.0 as Grammar Version. If the Interpreter is not
listed, following the next section to configure a new
Python interpreter.

5

4. Uncheck the “Create default ‘src’ folder. This step is
optional. If you check it, a folder named src will be
created to hold Python source code. The src folder
will be under c:\pybook.

5. Click Finish to create the project.

Figure 6

Choose PyDev to create Python project.

6

Figure 7

Enter a project and choose appropriate project
attributes.

6 Add Python Interpreter

Follow the steps below to configure a new Python
interpreter:

1. Click “clicking here to configure an interpreter not
listed” to display the Preferences window, as shown in
Figure 11.

2. Click New to open the Select Interpreter dialog box,
as shown in Figure 8.

3. Locate the Python interpreter and click OK to add it
to Eclipse.

7

Figure 11

You can add or remove a Python interpreter from this
window.

Figure 8

Browse to locate a Python interpreter.

7 Create a Python Program

Now you can create a program in the project by right-click
on the pybook node to display a context menu, as shown in
Figure 9. Choose New, File to display the New File dialog
box, as shown in Figure 10. Enter a file Welcome.py to
create a Python program. Click OK. You will see a Python
program the file created under the pybook node in the
package explorer, as shown in Figure 11.

8

Figure 9

Browse to locate a Python interpreter.

9

Figure 10

Enter a file name to create a Python program.

Figure 11

The file is created in the package explorer.

Type the code from Listing 1.1 in the text, as shown in
Figure 12.

Figure 12

Python code is entered in the editor pane.

8 Run a Python Program

Now you can run the program by right-clicking on the file
(Welcome.py) to display a context menu, as shown in Figure
13. Choose Run As, Python Run to run the program. The result
is displayed in the Console pane, as shown in Figure 14.

10

Figure 13

Run a Python program.

Figure 14

The output is displayed in the Console pane.

11

9 Debug Python Programs

The Python debugger utility is integrated in Eclipse. You
can pinpoint bugs in your program with the help of the
Eclipse debugger without leaving the IDE. The Eclipse
debugger enables you to set breakpoints and execute programs
line by line. As your program executes, you can watch the
values stored in variables, observe which methods are being
called, and know what events have occurred in the program.

To demonstrate debugging, Let us use Listing 2.7,
ComputeLoan.py, to demonstrate debugging. Create a new
program named ShowCurrentTime.py in the pybook project.

9.1 Setting Breakpoints

You can execute a program line by line to trace it, but this
is time-consuming if you are debugging a large program.
Often, you know that some parts of the program work fine. It
makes no sense to trace these parts when you only need to
trace the lines of code that are likely to have bugs. In
cases of this kind, you can use breakpoints.

A breakpoint is a stop sign placed on a line of source code
that tells the debugger to pause when this line is
encountered. The debugger executes every line until it
encounters a breakpoint, so you can trace the part of the
program at the breakpoint. Using the breakpoint, you can
quickly move over the sections you know work correctly and
concentrate on the sections causing problems.

There are several ways to set a breakpoint on a line. One
quick way is to click the cutter of the line on which you
want to put a breakpoint. You will see the line highlighted,
as shown in Figure 15. You also can set breakpoints by
choosing Run, Toggle Line Breakpoint. To remove a
breakpoint, simply click the cutter of the line.

As you debug your program, you can set as many breakpoints
as you want, and can remove breakpoints at any time during
debugging. The project retains the breakpoints you have set
when you exit the project. The breakpoints are restored when
you reopen it.

12

Figure 15

You can set breakpoints in the source code.

9.2 Starting the Debugger

There are several ways to start the debugger. A simple way
is shown below:

 1. Set a break point at the first statement in the

program in the Source Editor.

 2. Right-click on ComputeLoan.py in the project pane to
display a context menu. Choose Debug As, Python Run
to start debugging. You will first see the Confirm
Perspective Switch dialog, as shown in Figure 16.
Click Yes to switch to the Debug perspective. The UI
for Debug perspective is shown in Figure 17.

13

Figure 16

To start debug, Eclipse needs to switch to the Debug
perspective.

Figure 17

The debugger starts to run ComputeLoan.py.

9.3 Controlling Program Execution

The program pauses at the first line in the script. This
line, called the current execution point, is highlighted in
green. The execution point marks the next line of source
code to be executed by the debugger.

When the program pauses at the execution point, you can
issue debugging commands to control the execution of the

14

program. You also can inspect or modify the values of
variables in the program.

When Eclipse is in the debugging mode, the toolbar buttons
for debugging are displayed in the Debug window, as shown in
Figure 17. The toolbar button commands also appear in the
Run menu (see Figure 18). Here are the commands for
controlling program execution:

 Resume resumes the execution of a paused program.

 Suspend temporarily stops execution of a program.

 Terminate ends the current debugging session.

 Step Into executes a single statement or steps into a
method.

 Step Over executes a single statement. If the statement
contains a call to a method, the entire method is
executed without stepping through it.

 Step Return executes all the statements in the current
method and returns to its caller.

 Run to Line runs the program, starting from the current
execution point, and pauses and places the execution
point on the line of code containing the cursor, or at
a breakpoint.

15

Figure 18

The debugging commands appear under the Debug menu.

