

1

Eclipse Python Debugging Tutorial

For Introduction to Programming Using Python
By Y. Daniel Liang

This supplement covers the following topics:

 Set Breakpoints
 Start the Debugger
 Control Program Execution
 Examine Variables

0 Introduction

This tutorial introduces how to debug a Python program using
Eclipse. The Python debugger utility is integrated in
Eclipse. You can pinpoint bugs in your program with the help
of the Eclipse debugger without leaving the IDE. The Eclipse
debugger enables you to set breakpoints and execute programs
line by line. As your program executes, you can watch the
values stored in variables, observe which functions are
being called, and know what events have occurred in the
program.

To demonstrate debugging, Let us use Listing 2.7,
ComputeLoan.py, to demonstrate debugging. Create a new
program named ShowCurrentTime.py in the pybook project.

1 Set Breakpoints

You can execute a program line by line to trace it, but this
is time-consuming if you are debugging a large program.
Often, you know that some parts of the program work fine. It
makes no sense to trace these parts when you only need to
trace the lines of code that are likely to have bugs. In
cases of this kind, you can use breakpoints.

A breakpoint is a stop sign placed on a line of source code
that tells the debugger to pause when this line is
encountered. The debugger executes every line until it
encounters a breakpoint, so you can trace the part of the
program at the breakpoint. Using the breakpoint, you can
quickly move over the sections you know work correctly and
concentrate on the sections causing problems.

There are several ways to set a breakpoint on a line. One
quick way is to click the cutter of the line on which you
want to put a breakpoint. You will see the line highlighted,
as shown in Figure 1. You also can set breakpoints by
choosing Run, Toggle Line Breakpoint. To remove a
breakpoint, simply click the cutter of the line.

2

As you debug your program, you can set as many breakpoints
as you want, and can remove breakpoints at any time during
debugging. The project retains the breakpoints you have set
when you exit the project. The breakpoints are restored when
you reopen it.

Figure 1

You can set breakpoints in the source code.

2 Start the Debugger

There are several ways to start the debugger. A simple way
is shown below:

 1. Set a break point at the first statement in the

proigram in the Source Editor.

 2. Right-click on ComputeLoan.py in the project pane to
display a context menu. Choose Debug As, Python Run
to start debugging. You will first see the Confirm
Perspective Switch dialog, as shown in Figure 2.
Click Yes to switch to the Debug perspective. The UI
for Debug perspective is shown in Figure 3.

3

Figure 2

To start debug, Eclipse needs to switch to the Debug
perspective.

Figure 3

The debugger starts to run ComputeLoan.py.

3 Control Program Execution

The program pauses at the first line in the script. This
line, called the current execution point, is highlighted in
green. The execution point marks the next line of source
code to be executed by the debugger.

When the program pauses at the execution point, you can
issue debugging commands to control the execution of the
program. You also can inspect or modify the values of

4

variables in the program.

When Eclipse is in the debugging mode, the toolbar buttons
for debugging are displayed in the Debug window, as shown in
Figure 3. The toolbar button commands also appear in the Run
menu (see Figure 4). Here are the commands for controlling
program execution:

 Resume resumes the execution of a paused program.

 Suspend temporarily stops execution of a program.

 Terminate ends the current debugging session.

 Step Into executes a single statement or steps into a
function.

 Step Over executes a single statement. If the statement
contains a call to a function, the entire function is
executed without stepping through it.

 Step Return executes all the statements in the current
function and returns to its caller.

 Run to Line runs the program, starting from the current
execution point, and pauses and places the execution
point on the line of code containing the cursor, or at
a breakpoint.

5

Figure 4

The debugging commands appear under the Debug menu.

4 Examine Variables

Among the most powerful features of an integrated debugger
is its capability to examine the values in variables, or the
values of the parameters passed in a function call. You also
can modify a variable value if you want to try a new value
to continue debugging without restarting the program.

To demonstrate it, choose Run, Step Over to execute one line
in the source code, and you will see the prompting message
displayed in the Console, as shown in Figure 5.

6

Figure 5

Executing line 2 prompts the user for an input.

Enter a 7.5 and press the Enter key. You will see the
current execution point moved to line 4. Now in the
Variables tab, you will see the variable annualInterestRate
with value 7.5, as shown in Figure 6.

7

Figure 6

You can examine the variable value from the Variables
tab.

Continue to Step Over and enter a value for number of years
and enter a value for loan amount, as shown in Figure 7. Now
you will see these values in the Variable tab, as shown in
Figure 8.

8

Figure 7

The input values are entered from the Console tab.

9

Figure 8

The variables are displayed in the Variables tab.

Continue to Step Over to see the change of variables in the
Variable pane.

If you want to stop debugging, click the Terminate button in
the Console pane or choose Run, Terminate.

To go back to edit the program, choose Java from the
Perspective menu, as shown in Figure 9.

10

Figure 9

You can choose a layout for workspace in Eclispe from
the perspective menu.

TIP:

The debugger is an indispensable, powerful tool
that boosts your programming productivity. It
may take you some time to become familiar with
it, but the effort will pay off in the long run.

Note:

The debugger is not only a valuable tool for
finding errors, but it is also a valuable
pedagogical tool for learning programming.

