

1

Supplement: Regular Expressions
For Introduction to Programming Using Python

By Y. Daniel Liang

0 Introduction

Often you need to write the code to validate user input such as
to check whether the input is a number, a string with all
lowercase letters, or a social security number. How do you write
this type of code? A simple and effective way to accomplish this
task is to use the regular expression.

A regular expression (abbreviated regex) is a string that
describes a pattern for matching a set of strings. Regular
expression is a powerful tool for string manipulations. You can
use regular expressions for matching, replacing, and splitting
strings.

1 Getting Started

To use regex, import the re module. You can use the split
function in the module to split a string. For example,

re.split(" ", "ab bc cd")

splits "ab bc cd" into a list ['ab', 'bc', 'cd'].

At first glance, re.split function is very similar to the split
method in the string object. For example, you can use the
following method to split "ab bc cd".

"ab bc cd".split()

However, the re.split function is more powerful. You can specify
regex pattern to split a string. For example,

re.split("\d", "ab1bc4cd")

splits "ab1bc4cd" into a list ['ab', 'bc', 'cd']. \d in the
preceding statement is a regular expression. It represents any
single digit. Here is another example,

re.split("\d*", "ab13bc44cd443gg")

splits "ab13bc44cd443gg" into a list ['ab', 'bc', 'cd', 'gg'].
Here, the regular expression \d* means zero or more digits.

2 Regular Expression Syntax

A regular expression consists of literal characters and special
symbols. Table 1 lists some frequently used syntax for regular
expressions.

2

Table 1: Frequently Used Regular Expressions

Regular Expression Meaning Example

x A character literal "good" matches "good"
. Any single character "good" matches "goo."
(ab|cd) ab or cd "good" matches "a|g"
[abc] a, b, or c "good" matches "[ag]"
[^abc] any character except "good" matches "[^ac]"

 a, b, or c
[a-z] a through z "good" matches [a-i]oo[a-d]
[^a-z] any character except "good" matches goo[^i-x]
 a through z
\d a digit, same as [0-9] "good3" matches "good\d"
\D a non-digit "good" matches "\D\Dod"
\w a word character "good3" matches "goo\w\w"
\W a non-word character $good matches "\Wgood"
\s a whitespace character "good 2" matches "good\s2"
\S a non-whitespace char "good" matches "\Sood"

p* zero or more "good" matches "a*"
 occurrences of pattern p bbb matches "a*"
p+ one or more "good" matches "o+"
 occurrences of pattern p bbb matches "b+"
p? zero or one "good" matches "good?"
 occurrence of pattern p bbb matches "b?"
p{n} exactly n aaa matches "a{3}"
 occurrences of pattern p good does not match "go{2}d"
p{n,} at least n good matches "go{2,}d"
 occurrences of pattern p good does not match "g{1,}"
p{n,m} between n and m aa matches "a{1,9}"
 occurrences (inclusive) bb does not match "b{2,9}"

NOTE
Recall that a whitespace (or a whitespace character)
is any character which does not display itself but
does take up space. The characters ' ', '\t', '\n',
'\r', '\f' are whitespace characters. So \s is the
same as [\t\n\r\f], and \S is the same as [^
\t\n\r\f\v].

NOTE
A word character is any letter, digit, or the
underscore character. So \w is the same as [a-z[A-
Z][0-9]_] or simply [a-zA-Z0-9_], and \W is the same
as [^a-zA-Z0-9_].

NOTE
The last six entries *, +, ?, {n}, {n,}, and {n, m}
in Table 1 are called quantifiers that specify how
many times the pattern before a quantifier may
repeat. For example, A* matches zero or more A’s, A+
matches one or more A’s, A? matches zero or one A’s,
A{3} matches exactly AAA, A{3,} matches at least
three A’s, and A{3,6} matches between 3 and 6 A’s. *

3

is the same as {0,}, + is the same as {1,}, and ? is the
same as {0,1}.

CAUTION
Do not use spaces in the repeat quantifiers. For
example, A{3,6} cannot be written as A{3, 6} with a
space after the comma.

NOTE
You may use parentheses to group patterns. For
example, (ab){3} matches ababab, but ab{3} matches
abbb.

Let us use several examples to demonstrate how to construct
regular expressions.

Example 1: The pattern for social security numbers is xxx-xx-
xxxx, where x is a digit. A regular expression for social
security numbers can be described as

\d{3}-\d{2}-\d{4}

For example,

"111-22-3333" matches "\d{3}-\d{2}-\d{4}"

but

"11-22-3333" does not match "\d{3}-\d{2}-\d{4}"

Example 2: An even number ends with digits 0, 2, 4, 6, or 8. The
pattern for even numbers can be described as

\d*[02468]

For example,

"123" matches "\d*[02468]"

but
"122" does not match "\d*[02468]"

Example 3: The pattern for telephone numbers is (xxx) xxx-xxxx,
where x is a digit and the first digit cannot be zero. A regular
expression for telephone numbers can be described as

\\([1-9]\d{2}\\) \d{3}-\d{4}

4

Note that the parentheses symbols (and) are special characters
in a regular expression for grouping patterns. To represent a
literal (or) in a regular expression, you have to use \\(and
\\).

For example,

"(912) 921-2728" matches "\\([1-9]\d{2}\\) \d{3}-\d{4}"

but

"921-2728" does not match "\\([1-9]\d{2}\\) \d{3}-\d{4}"

Example 4: Suppose the last name consists of at most 25 letters
and the first letter is in uppercase. The pattern for a last
name can be described as

[A-Z][a-zA-Z]{1,24}

Note that you cannot have arbitrary whitespace in a regular
expression. For example, [A-Z][a-zA-Z]{1, 24} would be wrong.

For example,

"Smith" matches "[A-Z][a-zA-Z]{1,24}"

but

"Jones123" does not match "[A-Z][a-zA-Z]{1,24}"

Example 5: Python identifiers are defined in §2.4,
“Identifiers.”

 An identifier is a sequence of characters that consists of
letters, digits, underscores (_), and asterisk (*).

 An identifier must start with a letter or an underscore. It
cannot start with a digit.

The pattern for identifiers can be described as
[a-zA-Z_][\w$]*

5

Example 6: What strings are matched by the regular expression
"Welcome to (XHTML|HTML)"? The answer is Welcome to XHTML or
Welcome to HTML.

Example 7: What strings are matched by the regular expression
".*"? The answer is any string.

3 The match and search Functions

You can use the re.match and re.search functions to match a
string with a pattern. re.match(r, s) returns a match object if
the regex r matches at the start of string s. re.search(r, s)
returns a match object if the regex r matches anywhere in string
s. Listing 1 gives an example of using these functions.

Listing 1 MatchDemo.py

import re

regex = "\d{3}-\d{2}-\d{4}"

ssn = input("Enter SSN: ")

match1 = re.match(regex, ssn)

if match1 != None:

 print(ssn, " is a valid SSN")

 print("start position of the matched text is " +

 str(match1.start()))

 print("start and end position of the matched text is " +

 str(match1.span()))

else:

 print(ssn, " is not a valid SSN")

Sample Output

Enter SSN: 4343
4343 is not a valid SSN

Sample Output
Enter SSN: 434-32-3243
434-32-3243 is a valid SSN
start position of the matched text is 0
start and end position of the matched text is (0, 11)

Invoking re.match returns a match object if the string matches
the regex pattern at the start of the string. Otherwise, it
returns None. The program checks whether if there is a match. If
so, it invokes the match object’s start() method to return the
start position of the matched text in the string (line 10) and
the span() method to return the start and end position of the
matched text in a tuple (line 11).

6

Listing 2 SearchDemo.py

import re

regex = "\d{3}-\d{2}-\d{4}"

text = input("Enter a text: ")

match1 = re.search(regex, text)

if match1 != None:

 print(text, " contains a SSN")

 print("start position of the matched text is " +

 str(match1.start()))

 print("start and end position of the matched text is " +

 str(match1.span()))

else:

 print(text, " does not contain a SSN")

Sample Output
Enter a text: The ssn for Smith is 343-34-3490
The ssn for Smith is 343-34-3490 contains a SSN
start position of the matched text is 21
start and end position of the matched text is (21, 32)

Sample Output

Enter a text: Smith's ssn is 343.34.3434
Smith's ssn is 343.34.3434 does not contain a SSN

Invoking re.search returns a match object if the string matches
the regex pattern anywhere in the string. Otherwise, it returns
None. The program checks whether if there is a match (line 7).
If so, it invokes the match object’s start() method to return
the start position of the matched text in the string (line 10)
and the span() method to return the start and end position of
the matched text in a tuple (line 11).

4 Flags

For the functions in the re module, an optional flag parameter
can be used to specify additional constraints. For example, in
the following statement

match1 = re.search("a{3}", "AaaBe", re.IGNORECASE)

The string "AaaBe" matches the pattern a{3} case-insensitive.
But in the following statement

match1 = re.search("a{3}", "AaaBe")

The string "AaaBe" does not match the pattern a{3}.

