

43

Supplement: Case Study: Sudoku
For Introduction to Programming Using Python

By Y. Daniel Liang

This case study can be presented along with Chapter 11,
“Multidimensional Lists.”

This book teaches you how to program using a wide variety of
problems with various levels of difficulty. We use simple,
short, and stimulating examples to introduce programming and
problem-solving techniques and use interesting and challenging
examples to motivate students in programming. This section
presents an interesting problem of a sort that appears in the
newspaper every day. It is a number-placement puzzle, commonly
known as Sudoku.

1 Problem Description
Sudoku is a 9 × 9 grid divided into smaller 3 × 3 boxes (also
called regions or blocks), as shown in Figure 1(a). Some cells,
called fixed cells, are populated with numbers from 1 to 9. The
objective is to fill the empty cells, also called free cells,
with numbers 1 to 9 so that every row, every column, and every 3
× 3 box contains the numbers 1 to 9, as shown in Figure 1(b).

 5 3 7

 6 1 9 5

 9 8 6

 8 6 3

 4 8 3 1

 7 2 6

 6

 4 1 9 5

 8 7 9

 5 3 4 6 7 8 9 1 2

 6 7 2 1 9 5 3 4 8

 1 9 8 3 4 2 5 6 7

 8 5 9 7 6 1 4 2 3

 4 2 6 8 5 3 7 9 1

 7 1 3 9 2 4 8 5 6

 9 6 1 5 3 7 2 8 4

 2 8 7 4 1 9 6 3 5

 3 4 5 2 8 6 1 7 9

 (a) Input (b) Output
Figure 1
(b) is the solution to the Sudoku puzzle in (a).

For convenience, we use value 0 to indicate a free cell, as
shown in Figure 2(a). The grid can be naturally represented
using a two-dimensional list, as shown in Figure 2(b).

44

 5 3 0 0 7 0 0 0 0

 6 0 0 1 9 5 0 0 0

 0 9 8 0 0 0 0 6 0

 8 0 0 0 6 0 0 0 3

 4 0 0 8 0 3 0 0 1

 7 0 0 0 2 0 0 0 6

 0 6 0 0 0 0 0 0 0

 0 0 0 4 1 9 0 0 5

 0 0 0 0 8 0 0 7 9

grid =

 [[5, 3, 0, 0, 7, 0, 0, 0, 0],

 [6, 0, 0, 1, 9, 5, 0, 0, 0],

 [0, 9, 8, 0, 0, 0, 0, 6, 0],

 [8, 0, 0, 0, 6, 0, 0, 0, 3],

 [4, 0, 0, 8, 0, 3, 0, 0, 1],

 [7, 0, 0, 0, 2, 0, 0, 0, 6],

 [0, 6, 0, 0, 0, 0, 2, 8, 0],

 [0, 0, 0, 4, 1, 9, 0, 0, 5],

 [0, 0, 0, 0, 8, 0, 0, 7, 9]

]

 (a) (b)

Figure 2
A grid can be represented using a two-dimensional list.

2 Problem-Solving Strategy
How do you solve this problem? An intuitive approach is to
employ the following three rules:

Rule 1: Fill in free cells from the first to the last.
Rule 2: Fill in a smallest number possible.
Rule 3: If no number can fill in a free cell, backtrack.

For example, you can fill 1 into grid[0][2], 2 into grid[0][3],
4 into grid[0][5], 8 into grid[0][6], and 9 into grid[0][7], as
shown in Figure 3(a).

 5 3 1 2 7 4 8 9

 6 1 9 5

 9 8 6

 8 6 3

 4 8 3 1

 7 2 6

 6

 4 1 9 5

 8 7 9

 5 3 1 2 7 4 9 8

 6 1 9 5

 9 8 6

 8 6 3

 4 8 3 1

 7 2 6

 6

 4 1 9 5

 8 7 9

 (a) (b)
Figure 3
The program attempts to fill in free cells.

Now look at grid[0][8]. There is no possible value to fill in
this cell. You need to backtrack to the previous free cell at
grid[0][7] and reset its value. Since grid[0][7] is already 9,
no new value is possible. So you have to backtrack to its
previous free cell at grid[0][6] and change its value to 9.
Continue to move forward to set grid[0][7] to 8, as shown in
Figure 3(b). Now there is still no possible value for

45

grid[0][8]. Backtrack to grid[0][7]: no possible new value for
this cell. Backtrack to grid[0][6]: no possible new value for
this cell. Backtrack to grid[0][5] and change it to 6. Now
continue to move forward.

The search moves forward and backward continuously until one of
the following two cases arises:

 All free cells are filled. A solution is found.
 The search is backtracked to the first free cell with no

new possible value. The puzzle has no solution.

Pedagogical NOTE
Follow the link
www.cs.armstrong.edu/liang/animation/SudokuAnimation
.html to see how the search progresses. As shown in
Figure 4(a), number 1 is placed in the first row and
last column. This number is invalid, so the next
value 2 is placed in Figure 4(b). This number is
still invalid, so the next value 3 is placed in
Figure 4(c). The simulation displays all the search
steps.

 (a) (b) (c)

Figure 4
The animation tool enables you to observe how the search
works for solving a Sudoku puzzle.

3 Program Design
The program can be designed as shown in (a) and further refined
with functions as in (b):

46

Read the input for a puzzle
if the grid is not valid:
 Report the grid not valid
else:
 Search for a solution
 if solution found:

Display the solution
 else:
 Report no solution

(a)

grid = readAPuzzle(grid)
if !isValid(grid):
 Report the grid not valid
else:
 if search(grid):

prindGrid(grid)
 else:
 Report no solution

(b)

The readAPuzzle function reads a Sudoku puzzle from the console
into grid. The printGrid function displays the contents in grid
to the console. The isValid function checks whether the grid is
valid. These functions are easy to implement. We now turn our
attention to the search function.

4 Search Algorithm
To better facilitate search on free cells, the program stores
free cells in a two-dimensional list, as shown in Figure 5. Each
row in the list has two columns, which indicate the subscripts
of the free cells in the grid. For example, {freeCellList[0][0],
freeCellList[0][1]} (i.e., {0, 2}) is the subscript for the
first free cell grid[0][2] in the grid and {freeCellList[25][0],
freeCellList[25][1]} (i.e., {4, 4}) is the subscript for free
cell grid[4][4] in the grid, as shown in Figure 5.

 5 3 7

 6 1 9 5

 9 8 6

 8 6 3

 4 8 3 1

 7 2 6

 6

 4 1 9 5

 8 7 9

 0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

freeCellList =

 [[0, 2], [0, 3], [0, 5], [0, 6], [0, 7], [0, 8],

 [1, 1], [1, 2], [1, 6], [1, 7], [1, 8], [2, 0],

 [2, 3], [2, 4], [2, 5], [2, 6], [2, 8], [3, 1],

 [3, 2], [3, 3], [3, 5], [3, 6], [3, 7], [4, 1],

 [4, 2], [4, 4], [4, 6], [4, 7], [5, 1], [5, 2],

 [5, 3], [5, 5], [5, 6], [5, 7], [6, 0], [6, 2],

 [6, 3], [6, 4], [6, 5], [6, 8], [7, 0], [7, 1],

 [7, 2], [7, 6], [7, 7], [8, 0], [8, 1], [8, 2],

 [8, 3], [8, 5], [8, 6]

]

Figure 5
freeCellList is a two-dimensional list representation for
the free cells.

The search starts from the first free cell with k = 0, where k
is the index of the current free cell being considered in the
free-cell list, as shown in Figure 6. It fills a valid value in
the current free cell and then moves forward to consider the
next. If no valid value can be found for the current free cell,
the search backtracks to the preceding free cell. This process

Refin

47

continues until all free cells are filled with valid values (a
solution is found) or the search backtracks to the first free
cell with no solution.

 5 3 7

 6 1 9 5

 9 8 6

 8 6 3

 4 8 3 1

 7 2 6

 6

 4 1 9 5

 8 7 9

freeCellList[0] freeCellList[1] freeCellList[2] …
 [0, 2[[0, 3] [0, 5]

freeCellList

initially k is 0 k

A solution is
found if k
reaches the endk moves forward

and backward

freeCellList[0] is [0, 2],
freeCellList[1] is [0, 3],
freeCellList[2] is [0, 5],
etc.

Figure 6
The search attempts to fill free cells with appropriate
values.

The search algorithm can be described as follows:

Step 1: (Initialization) Obtain a freeCellList from a grid, as
shown in Figure 5. Let k denote the index in freeCellList with k
initially 0, as shown in Figure 6.

Repeatedly perform Steps 2–4 until search ends with a solution
or no solution

{

Step 2: Let grid[i][j] be the current free cell being
considered, where i = freeCellList[k][0] and j =
freeCellList[k][1].

Step 3: If grid[i][j] is 0, fill it with 1.

Step 4: Consider three cases:

Case 1: grid[i][j] is valid. If k is the last index in
freeCellList, a solution is found. Otherwise, search
moves forward with k = k + 1.

Case 2: grid[i][j] is invalid and grid[i][j] < 9. Set a new
value for the free cell with grid[i][j] = grid[i][j] +
1.

Case 3: grid[i][j] is invalid and grid[i][j] is 9. If k =
0, search ends with no solution. Otherwise backtrack
with k = k – 1, reset i = freeCellList[k][0] and j =
freeCellList[k][1], and continue to backtrack if
grid[i][j] is 9. When grid[i][j] < 9, set grid[i][j] =
grid[i][j] + 1.

}

48

5 Implementation
Listing 1 gives the source code for the program.

Listing 1 Sudoku.py

def main():

 # Read a Sudoku puzzle

 grid = readAPuzzle()

 if not isValidGrid(grid):

 print("Invalid input")

 elif search(grid):

 print("The solution is found:")

 printGrid(grid)

 else:

 print("No solution")

 return 0

Read a Sudoku puzzle from the keyboard

def readAPuzzle():

 print("Enter a Sudoku puzzle:")

 grid = []

 for i in range(9):

 line = input().split()

 grid.append([eval(x) for x in line])

 return grid

Obtain a list of free cells from the puzzle

def getFreeCellList(grid):

 freeCellList = []

 for i in range(9):

 for j in range(9):

 if grid[i][j] == 0:

 freeCellList.append([i, j])

 return freeCellList

Display the values in the grid

def printGrid(grid):

 for i in range(9):

 for j in range(9):

 print(grid[i][j], end = " ")

 print()

Search for a solution

def search(grid):

 freeCellList = getFreeCellList(grid)

 numberOfFreeCells = len(freeCellList)

 if numberOfFreeCells == 0:

 return True # No free cells

 k = 0 # Start from the first free cell

49

 while True:

 i = freeCellList[k][0]

 j = freeCellList[k][1]

 if grid[i][j] == 0:

 grid[i][j] = 1 # Fill the free cell with number 1

 if isValid(i, j, grid):

 if k + 1 == numberOfFreeCells:

 # No more free cells

 return True # A solution is found

 else:

 # Move to the next free cell

 k += 1

 elif grid[i][j] < 9:

 # Fill the free cell with the next possible value

 grid[i][j] = grid[i][j] + 1

 else:

 # grid[i][j] is 9, backtrack

 while grid[i][j] == 9:

 if k == 0:

 return False # No possible value

 grid[i][j] = 0 # Reset to free cell

 k -= 1 # Backtrack to the preceding free cell

 i = freeCellList[k][0]

 j = freeCellList[k][1]

 # Fill the free cell with the next possible value,

 # search continues from this free cell at k

 grid[i][j] = grid[i][j] + 1

 return True # A solution is found

Check whether grid[i][j] is valid in the grid

def isValid(i, j, grid):

 # Check whether grid[i][j] is valid at the i's row

 for column in range(9):

 if column != j and grid[i][column] == grid[i][j]:

 return False

 # Check whether grid[i][j] is valid at the j's column

 for row in range(9):

 if row != i and grid[row][j] == grid[i][j]:

 return False

 # Check whether grid[i][j] is valid in the 3-by-3 box

 for row in range((i // 3) * 3, (i // 3) * 3 + 3):

 for col in range((j // 3) * 3, (j // 3) * 3 + 3):

 if row != i and col != j and grid[row][col] == grid[i][j]:

 return False

 return True # The current value at grid[i][j] is valid

Check whether the fixed cells are valid in the grid

def isValidGrid(grid):

 for i in range(9):

50

 for j in range(9):

 if grid[i][j] < 0 or grid[i][j] > 9 or (grid[i][j] != 0 \

 and not isValid(i, j, grid)):

 return False

 return True # The fixed cells are valid

main()

Sample Output
Enter a puzzle:
0 6 0 1 0 4 0 5 0

0 0 8 3 0 5 6 0 0

2 0 0 0 0 0 0 0 1

8 0 0 4 0 7 0 0 6

0 0 6 0 0 0 3 0 0

7 0 0 9 0 1 0 0 4

5 0 0 0 0 0 0 0 2

0 0 7 2 0 6 9 0 0

0 4 0 5 0 8 0 7 0

The solution is found:

9 6 3 1 7 4 2 5 8
1 7 8 3 2 5 6 4 9
2 5 4 6 8 9 7 3 1
8 2 1 4 3 7 5 9 6
4 9 6 8 5 2 3 1 7
7 3 5 9 6 1 8 2 4
5 8 9 7 1 3 4 6 2
3 1 7 2 4 6 9 8 5
6 4 2 5 9 8 1 7 3

The program invokes the readAPuzzle() function (line 3) to read
a Sudoku puzzle in a two-dimensional list grid. There are three
possible outputs from the program:

 The input is invalid (line 5).
 A solution is found (line 7).
 No solution is found (line 10).

The getFreeCellList function (lines 25–32) returns a two-
dimensional list storing the free-cell positions.
freeCellList[i][j] indicates a free cell at row index i and
column index j.

51

The search function invokes getFreeCellList to find all free
cells (line 43). It then starts search from the first free cell
with k = 0 (line 48), where k is the position of the current
free cell being considered in the free-cell list, as shown in
Figure 6.

The value in a free cell starts with 1 (line 53). If the value
is valid, the next cell is considered (line 61). If the value is
not valid, its next value is considered (line 64). If the value
is already 9, the search is backtracked (lines 67–73). All the
backtracked cells become free again and their values are reset
to 0 (line 70). If the search backtracks to the free-cell list
at position k and the current free-cell value is not 9, increase
the value by 1 (line 77) and continue the search.

The search function returns True when the search advances but no
more free cells are left (line 58). A solution is found.

The search returns False when the search is backtracked to the
first cell (line 69) and all possible values are exhausted for
the cell. No solution can be found.

The isValid(i, j, grid) function checks whether the current
value at grid[i][j] is valid. It checks whether grid[i][j]
appears more than once at row i (lines 84–86), at column j
(lines 89–91), and in the 3 × 3 box (lines 94–97).

How do you locate all the cells in the same box? For any
grid[i][j], the starting cell of the 3 × 3 box that contains it
is grid[(i // 3) * 3][(j // 3) * 3], as illustrated in Figure 7.

For any grid[i][j] in this 3-by-3 box, its starting cell
is grid[3*(i//3)][3*(j//3)] (i.e., grid[0][6]). For
example, for grid[2][8], i=2 and j=8, 3*(j//3)=0 and
3*(j//3) =6.

grid[0][6]

grid[6][3]

For any grid[i][j] in this 3-by-3 box, its
starting cell is grid[3*(i//3)][3*(j//3)]
(i.e., grid[6][3]). For example, for
grid[8][5], i=8 and j=5, 3*(i//3)=6 and
3*(j//3) =3.

Figure 7
The location of the first cell in a 3 × 3 box determines
the locations of other cells in the box.

With this observation, you can easily identify all the cells in
the box. Suppose grid[r][c] is the starting cell of a 3 × 3 box;
the cells in the box can be traversed in a nested loop as
follows:

52

Get all cells in a 3 by 3 box starting at grid[r][c]

for row in range(r, r + 3):

 for col in range(c, c + 3):

 # grid[row][col] is in the box

Note that there may be multiple solutions for an input. The
program will find one such solution. You may modify the program
to find all solutions in Programming Exercise 8.17.

It is cumbersome to enter 81 numbers from the keyboard. You may
store the input in a file, say sudoku.txt, and run the program
using the following command:

python Sudoku.py < sudoku.txt

