
str's format Method
For Introduction to Programming Using Python

By Y. Daniel Liang

The text introduced the format function to format a number
or a string. The str’s class has a format method that is
very similar to the format function. This supplement
introduces the str’s format method.

The syntax to invoke this method is

s.format(item0, item1, item2, ..., itemk)

where s is a string that may consist of substrings and
formatting instruction for each item in the form of
{index:format-specifier}. index refers to the item and
format-specifier specifies how the item is formatted. For
example, the following code

count = 5

amount = 45.56

print("count is {0} and amount is {1:9.6f}".format(count, amount))

items

{1:9.6f}

index format specifier

displays

count is 5 and amount is 45.560000

This example formats two items. The first item is count. No
format-specifier is specified for count. So the value of
count is simply inserted in the slot indicated by {0}. The
second item is amount and its specifier is 9.6f, which
specified the width of the item is 9 and precision is 6. f
means a fixed point number. You can use d for decimal
integer and s for a string. For example, the following code

print("{0:8s}{1:8d}{2:8.1f}".format("Python", 1234, 5.68))

displays

Python□□□□□□1234□□□□□5.7

8 8 8

where the square box (•) denotes a blank space. Note that
the last the number in the last item is rounded up to the
specified precision.

If an item requires more spaces than the specified width,
the width is automatically increased. For example, the
following code

print("{0:3s}#{1:2d}#{2:3.2f}".format("Python", 111, 924.656))

displays

Python#111#924.66

The specified width for string item Python is 3, which is
smaller than the string size 8. The width is automatically
increased to 8. The specified width for int item 111 is 2,
which is smaller than its actual size 3. The width is
automatically increased to 3. The specified width for float
item 924.656 is 3, but it needs width 6 to display 924.66.
So the width is automatically increased to 6.

By default, the strings are left aligned and the numbers are
right aligned. You can put the < or > symbol in the
specifier to specify that the item is left or right aligned
in the output within the specified field. For example, the
following statements

print("{0:>8d}#{1:>8s}#{2:>8.1f}".format(1234, "Python", 5.63))

print("{0:<8d}#{1:<8s}#{2:<8.1f}".format(1234, "Python", 5.63))

print("{0:8d}#{1:8s}#{2:8.1f}".format(1234, "Python", 5.63))

display

□□□□1234#□□Python#□□□□□5.6
1234□□□□#Python□□#5.6□□□□□
□□□□1234#Python□□#□□□□□5.6

Note that the specifier types d and s can be omitted. So,
the preceding statement can be written as

print("{0:>8}#{1:>8}#{2:>8.1f}".format(1234, "Python", 5.63))

print("{0:<8}#{1:<8}#{2:<8.1f}".format(1234, "Python", 5.63))

print("{0:8}#{1:8}#{2:8.1f}".format(1234, "Python", 5.63))

Check point
1 What is wrong in the following statements?

(a) print("{0} {1}".format(1, 2, 3))

(b) print("{0} {1}".format(1))

2 Show the output of the following statements.

(a) print("amount is {0:5.4f} {1:10.2}".format(33.32, 33.32))

(b) print("amount is {0} {1:9.2}".format(33.32, 33.32))

(c) print("amount is {0} {1:10.2}".format("New York", 33.32))

