
CHAPTER 27

Hashing

Objectives

 To understand what hashing is and what hashing is used for (§27.2).

 To obtain the hash code for an object and design the hash function to map a key to an index (§27.3).

 To handle collisions using open addressing (§27.4).

 To know the differences among linear probing, quadratic probing, and double hashing (§27.4).

 To handle collisions using separate chaining (§27.5).

 To understand the load factor and the need for rehashing (§27.6).

 To implement map using hashing (§27.7).

 To implement set using hashing (§27.8).

27.1 Introduction

<key point>

Hashing is superefficient. It takes O(1) time to search, insert, and delete an element using hashing.

<end key point>

The preceding chapter introduced binary search trees. An element can be found in O(log n) time in a well-balanced

search tree. Is there a more efficient way to search for an element in a container? This chapter introduces a

technique called hashing. You can use hashing to implement a map or a set to search, insert, and delete an element

in O(1) time.

<margin note>why hashing?

27.2 What Is Hashing?

<key point>

Hashing uses a hashing function to map a key to an index.

<end key point>

Before introducing hashing, let us review map, which is a data structure that is implemented using hashing. Recall

that a map (introduced in Section 22.6) is a container object that stores entries. Each entry contains two parts: a key

and a value. The key, also called a search key, is used to search for the corresponding value. For example, a

dictionary can be stored in a map, in which the words are the keys and the definitions of the words are the values.

<margin note>map

<margin note>key

<margin note>value

<box>

NOTE

A map is also called a dictionary, a hash table, or an associative array.

<end box>

<key term>dictionary

<key term>hash table

<key term>associative array

The STL defines the map and multimap classes for modeling maps. You will learn the concept of hashing and

use it to implement a map in this chapter.

If you know the index of an element in the array, you can retrieve the element using the index in O(1) time. So

does that mean we can store the values in an array and use the key as the index to find the value? The answer is

yes—if you can map a key to an index. The array that stores the values is called a hash table. The function that

maps a key to an index in the hash table is called a hash function. As shown in Figure 27.1, a hash function obtains

an index from a key and uses the index to retrieve the value for the key. Hashing is a technique that retrieves the

value using the index obtained from the key without performing a search.

<margin note>hash table

<key term>hash function

<margin note>hashing

Figure 27.1

A hash function maps a key to an index in the hash table.

How do you design a hash function that produces an index from a key? Ideally, we would like to design a

function that maps each search key to a different index in the hash table. Such a function is called a perfect hash

function. However, it is difficult to find a perfect hash function. When two or more keys are mapped to the same

hash value, we say that a collision has occurred. Although there are ways to deal with collisions, which are

discussed later in this chapter, it is better to avoid collisions in the first place. Thus, you should design a fast and

easy-to-compute hash function that minimizes collisions.

<key term>perfect hash function

<margin note>collision

<check point>

 27.1 What is a hash function? What is a perfect hash function? What is a collision?

<end check point>

27.3 Hash Functions and Hash Codes

<key point>

A typical hash function first converts a search key to an integer value called a hash code, then compresses the

hash code into an index to the hash table.

<end key point>

C++ 11 defines a member function hash_code() in the type_info class, which returns an integer hash code

for an element of a primitive type or an object type depending on the type and value of the element. The contract for

the hash_code() function is as follows:

<key term>hash code

<margin note>hash_code()

1. The function returns the same hash code if the two elements are equal.

2. During the execution of a program, invoking the hash_code funciton multiple times returns the same

integer, provided that the object’s data are not changed.

3. Two unequal objects may have the same hash code, but the function in C++11 is to avoid too many such

cases.

The following sections discuss the implementation of the hash code for numbers and strings.

27.3.1 Hash Codes for Primitive Types

For search keys of the type short, int, and char, simply cast them to int. Therefore, two different search keys

of any one of these types will have different hash codes.

<margin note>short, int, char

For a search key of the type float, use floatToIntBits(key) as the hash code, where

floatToIntBits(float f) returns an int value whose bit representation is the same as the bit

representation for the floating number f. Thus, two different search keys of the float type will have different

hash codes. See Programming Exercise 27.6 for the implementation of floatToIntBits.

<margin note>float

For a search key of the type long long (long long is 64 bits in C++11), simply casting it to int would not

be a good choice, because all keys that differ in only the first 32 bits will have the same hash code. To take the first

32 bits into consideration, divide the 64 bits into two halves and perform the exclusive-or operation to combine the

two halves. This process is called folding. The hash code for a long key is

<margin note>long

<margin note>folding

int hashCode = static_cast<int>(key ^ (key >> 32));

Note that >> is the right-shift operator that shifts the bits 32 positions to the right. For example, 1010110 >> 2

yields 0010101. The ^ is the bitwise exclusive-or operator. It operates on two corresponding bits of the binary

operands. For example, 1010110 ^ 0110111 yields 1100001. For more on bitwise operations, see Appendix

G, Bitwise Operations.

For a search key of the type double, first convert it to a long long value using the

doubleToLongLongBits function, and then perform a folding as follows:

<margin note>double

<margin note>folding

long bits = doubleToLongLongBits(key);

int hashCode = static_cast<int>(bits ^ (bits >> 32));

See Programming Exercise 27.7 for the implementation of doubleToLongLongBits.

27.3.2 Hash Codes for Strings

Search keys are often strings, so it is important to design a good hash function for strings. An intuitive approach is

to sum the numeric code of all characters as the hash code for the string. This approach may work if two search keys

in an application don’t contain the same letters, but it will produce a lot of collisions if the search keys contain the

same letters, such as tod and dot.

A better approach is to generate a hash code that takes the position of characters into consideration. Specifically,

let the hash code be

s0*b(n-1) + s1*b(n-2) + ... + sn-1

where si is s[i]. This expression is a polynomial for some positive b, so this is called a polynomial hash code.

Using Horner’s rule for polynomial evaluation (see Section 6.14), the hash code can be calculated efficiently as

follows:

<key term>polynomial hash code

(...((s0*b + s1)b + s2)b + ... + sn-2)b + sn-1

This computation can cause an overflow for long strings, but arithmetic overflow is ignored in C++. You should

choose an appropriate value b to minimize collisions. Experiments show that good choices for b are 31, 33, 37, 39,

and 41.

27.3.3 Compressing Hash Codes

The hash code for a key can be a large integer that is out of the range for the hash-table index, so you need to scale

it down to fit in the index’s range. Assume the index for a hash table is between 0 and N-1. The most common way

to scale an integer to between 0 and N-1 is to use

h(hashCode) = hashCode % N

To ensure that the indices are spread evenly, choose N to be a prime number greater than 2.

Ideally, you should choose a prime number for N. However, it is time consuming to find a large prime number.

We will choose N to be a value of the power of 2. There is a good reason for this choice. When N is a value of the

power of 2,

h(hashCode) = hashCode % N

is the same as

h(hashCode) = hashCode & (N – 1)

The ampersand, &, is a bitwise AND operator (see Appendix G, Bitwise Operations). The AND of two

corresponding bits yields a 1 if both bits are 1. For example, assume N = 4 and hashCode = 11, 11 % 4 =

3, which is the same as 01011 & 00011 = 11. The & operator can be performed much faster than the %

operator.

To ensure that the hashing is evenly distributed, a supplemental hash function is also used along with the primary

hash function. The supplemental function is defined as:

int supplementalHash(int h)

{

 h ^= (h >> 20) ^ (h >> 12);

 return h ^ (h >> 7) ^ (h >> 4);

}

^ and >> are bitwise exclusive-or and unsigned right-shift operations (also introduced in Appendix G). The bitwise

operations are much faster than the multiplication, division, and remainder operations. You should replace these

operations with the bitwise operations whenever possible.

The complete hash function is defined as:

h(hashCode) = supplementalHash(hashCode) % N

This is the same as

h(hashCode) = supplementalHash(hashCode) & (N – 1)

since N is a value of the power of 2.

<check point>

 27.2 What is a hash code? What is the hash code for short, int, and char?

 27.3 How is the hash code for a float value computed?

 27.4 How is the hash code for a long value of 64 bits computed?

 27.5 How is the hash code for a double value computed?

 27.6 How is the hash code for a string object computed?

 27.7 How is a hash code compressed to an integer representing the index in a hash table?

 27.8 If N is a value of the power of 2, is N / 2 same as N >> 1?

 27.9 If N is a value of the power of 2, is m % N same as m & (N – 1) for any integer m?

<end check point>

27.4 Handling Collisions Using Open Addressing

<key point>

A collision occurs when two keys are mapped to the same index in a hash table. Generally, there are two ways

for handling collisions: open addressing and separate chaining.

<end key point>

Open addressing is the process of finding an open location in the hash table in the event of a collision. Open

addressing has several variations: linear probing, quadratic probing, and double hashing.

<key term>open addressing

27.4.1 Linear Probing

When a collision occurs during the insertion of an entry to a hash table, linear probing finds the next available

location sequentially. For example, if a collision occurs at hashTable[k % N], check whether

hashTable[(k+1) % N] is available. If not, check hashTable[(k+2) % N] and so on, until an available

cell is found, as shown in Figure 27.2.

<margin note>add entry

<key term>linear probing

<box>

NOTE

When probing reaches the end of the table, it goes back to the beginning of the table. Thus, the hash table is

treated as if it were circular.

<margin note>circular hash table

<end box>

Figure 27.2

Linear probing finds the next available location sequentially.

To search for an entry in the hash table, obtain the index, say k, from the hash function for the key. Check

whether hashTable[k % N] contains the entry. If not, check whether hashTable[(k+1) % N] contains

the entry, and so on, until it is found, or an empty cell is reached.

<margin note>search entry

To remove an entry from the hash table, search the entry that matches the key. If the entry is found, place a

special marker to denote that the entry is available. Each cell in the hash table has three possible states: occupied,

marked, or empty. Note that a marked cell is also available for insertion.

<margin note>remove entry

Linear probing tends to cause groups of consecutive cells in the hash table to be occupied. Each group is called a

cluster. Each cluster is actually a probe sequence that you must search when retrieving, adding, or removing an

entry. As clusters grow in size, they may merge into even larger clusters, further slowing down the search time. This

is a big disadvantage of linear probing.

<key term>cluster

<box>

PEDAGOGICAL NOTE

For an interactive GUI demo to see how linear probing works, go to

www.cs.armstrong.edu/liang/animation/HashingLinearProbingAnimation.html, as shown in Figure 27.3.

<animation icon>linear probing animation on Companion Website

<end box>

27.4.2 Quadratic Probing

Quadratic probing can avoid the clustering problem that can occur in linear probing. Linear probing looks at

the consecutive cells beginning at index k. Quadratic probing, on the other hand, looks at the cells at indices

 2k j % N, for 0,j that is, k % N, 1k % N, 4k % n, 9k % N, . . . , and so on, as shown in

Figure 27.4.

<key term>quadratic probing

Figure 27.3

The animation tool shows how linear probing works.

Figure 27.4

Quadratic probing increases the next index in the sequence by j2 for 1, 2, 3, .j

Quadratic probing works in the same way as linear probing except for a change in the search sequence. Quadratic

probing avoids linear probing’s clustering problem, but it has its own clustering problem, called secondary

clustering; that is, the entries that collide with an occupied entry use the same probe sequence.

<key term>secondary clustering

Linear probing guarantees that an available cell can be found for insertion as long as the table is not full.

However, there is no such guarantee for quadratic probing.

<box>

PEDAGOGICAL NOTE

For an interactive GUI demo to see how quadratic probing works, go to

www.cs.armstrong.edu/liang/animation/HashingQuadraticProbingAnimation.html, as shown in Figure 27.5.

<animation icon>quadratic probing animation on Companion Website

<end box>

27.4.3 Double Hashing

Another open addressing scheme that avoids the clustering problem is known as double hashing. Starting from the

initial index k, both linear probing and quadratic probing add an increment to k to define a search sequence. The

increment is 1 for linear probing and j2 for quadratic probing. These increments are independent of the keys.

Double hashing uses a secondary hash function h'(key) on the keys to determine the increments to avoid the

clustering problem. Specifically, double hashing looks at the cells at indices (k + j * h'(key)) % N, for j ≥ 0, that is, k

% N, (k + h'(key)) % N, (k + 2 * h'(key)) % N, (k + 3 * h'(key)) % N, ..., and so on.

<key term>double hashing

For example, let the primary hash function h and secondary hash function h' on a hash table of size 11 be

defined as follows:

h(key) = key % 11;

h'(key) = 7 – key % 7;

For a search key of 12, we have

h(12) = 12 % 11 = 1;

h'(12) = 7 – 12 % 7 = 2;

Suppose the elements with the keys 45, 58, 4, 28, and 21 are already placed in the hash table. We now insert the

element with key 12. The probe sequence for key 12 starts at index 1. Since the cell at index 1 is already

occupied, search the next cell at index 3 (1 + 1 * 2). Since the cell at index 3 is already occupied, search the

next cell at index 5 (1 + 2 * 2). Since the cell at index 5 is empty, the element for the key 12 is now inserted

at this cell. The search process is illustrated in Figure 27.6.

The indices of the probe sequence are as follows: 1, 3, 5, 7, 9, 0, 2, 4, 6, 8, 10. This sequence reaches the entire

table. You should design your functions to produce a probe sequence that reaches the entire table. Note that the

second function should never have a zero value, since zero is not an increment.

Figure 27.5

The animation tool shows how quadratic probing works.

Figure 27.6

The secondary hash function in a double hashing determines the increment of the next index in the probe sequence.

.
.

.
.
.

0

1

2

3

4

5

6

7

8

9

10

key: 4

key: 28

h(12)

key: 21

key: 45

key: 58

.
.

.
.
.

0

1

2

3

4

5

6

7

8

9

10

key: 4

key: 28

key: 21

key: 45

key: 58

.
.

.
.
.

0

1

2

3

4

5

6

7

8

9

10

key: 4

key: 28

key: 21

key: 45

key: 58 h(12) + h'(12)

h(12) + 2*h'(12)

<check point>

27.10 What is open addressing? What is linear probing? What is quadratic probing? What is double hashing?

27.11 Describe the clustering problem for linear probing.

27.12 What is secondary clustering?

27.13 Show the hash table of size 11 after inserting entries with keys 34, 29, 53, 44, 120, 39, 45, and 40, using

linear probing.

27.14 Show the hash table of size 11 after inserting entries with keys 34, 29, 53, 44, 120, 39, 45, and 40, using

quadratic probing.

27.15 Show the hash table of size 11 after inserting entries with keys 34, 29, 53, 44, 120, 39, 45, and 40, using

double hashing with the following functions:

h(k) = k % 11;

h'(k) = 7 – k % 7;

<end check point>

27.5 Handling Collisions Using Separate Chaining

<key point>

The separate chaining scheme places all entries with the same hash index in the same location, rather than

finding new locations. Each location in the separate chaining scheme uses a bucket to hold multiple entries.

<end key point>

<key term>separate chaining

<margin note>implementing bucket

You can implement a bucket using an array, ArrayList, or LinkedList. We will use LinkedList for

demonstration. You can view each cell in the hash table as the reference to the head of a linked list, and elements in

the linked list are chained starting from the head, as shown in Figure 27.7.

Figure 27.7

Separate chaining scheme chains the entries with the same hash index in a bucket.

<check point>

27.16 Show the hash table of size 11 after inserting entries with the keys 34, 29, 53, 44, 120, 39, 45, and 40,

using separate chaining.

<end check point>

27.6 Load Factor and Rehashing

<key point>

The load factor measures how full a hash table is. If the load factor is exceeded, increase the hash-table size

and reload the entries into the new larger hash table. This is called rehashing.

<end key point>

<key term>rehashing

Load factor (lambda) measures how full a hash table is. It is the ratio of the number of elements to the size of the

hash table, that is, ,
n

N
 where n denotes the number of elements and N the number of locations in the hash table.

<key term>load factor

Note that is zero if the map is empty. For the open addressing scheme, is between 0 and 1; is 1 if the

hash table is full. For the separate chaining scheme, can be any value. As increases, the probability of a

collision increases. Studies show that you should maintain the load factor under 0.5 for the open addressing

scheme and under 0.9 for the separate chaining scheme.

Keeping the load factor under a certain threshold is important for the performance of hashing. Whenever the load

factor exceeds the threshold, you need to increase the hash-table size and rehash all the entries in the map into the

new larger hash table. Notice that you need to change the hash functions, since the hash-table size has been

changed. To reduce the likelihood of rehashing, since it is costly, you should at least double the hash-table size.

Even with periodic rehashing, hashing is an efficient implementation for map.

<margin note>threshold

<margin note>rehash

<box>

PEDAGOGICAL NOTE

For an interactive GUI demo to see how separate chaining works, go to

www.cs.armstrong.edu/liang/animation/HashingUsingSeparateChainingAnimation.html, as shown in Figure

27.8.

<animation icon>separate chaining animation on Companion Website

<end box>

Figure 27.8

The animation tool shows how separate chaining works.

<check point>

27.17 Assume the hash table has the initial size 4 and its load factor is 0.5; show the hash table after inserting

entries with the keys 34, 29, 53, 44, 120, 39, 45, and 40, using linear probing.

27.18 Assume the hash table has the initial size 4 and its load factor is 0.5; show the hash table after inserting

entries with the keys 34, 29, 53, 44, 120, 39, 45, and 40, using quadratic probing.

27.19 Assume the hash table has the initial size 4 and its load factor is 0.5; show the hash table after inserting

entries with the keys 34, 29, 53, 44, 120, 39, 45, and 40, using separate chaining.

<end check point>

27.7 Implementing a Map Using Hashing

<key point>

A map can be implemented using hashing.

<end key point>

Now you understand the concept of hashing. You know how to design a good hash function to map a key to an

index in a hash table, how to measure performance using the load factor, and how to increase the table size and

rehash to maintain the performance. This section demonstrates how to implement a map using separate chaining.

We design our custom map class and name it MyMap, as shown in Figure 27.9.

Figure 27.9

MyMap implements map using hashing.

 MyMap<K, V>

-size: int

-capacity: int

-loadFactorThreshold: float

-table: vector<Entry<K, V>>*

+MyMap()

+MyMap(capacity: int)

+MyMap(capacity: int, loadFactorThreshold:
float)

+clear(): void

+containsKey(key: K): bool const

+containsValue(value: V): bool const

+getEntries(): vector<Entry<K, V>> const

+get(key: K): V const

+isEmpty(): bool

+getKeys(): vector<K> const

+put(key: K, value: V): V

+remove(key: K): void

+getSize(): int const

+getValues(): vector<V> const

+toString(): string const

The number of the entries in the map.

table points an array of buckets, each of which is a vector.

Load factor of the map.

The size of the array for hash table.

Entry<K, V>

+key: K

+value: V

+Entry(key: K, value: V)

+toString(): string const

Constructs an entry with the specified key and value.

Returns a string representation for the entry.

Creates an empty map with default capacity 4 and default
load factor threshold 0.75.

Creates a map with a specified capacity and default load
factor threshold 0.75.

Creates a map with a specified capacity and load factor
threshold.

Removes all entries from this map.

Returns true if this map contains an entry for the specified
key.

Returns true if this map maps one or more keys to the
specified value.

Returns a vector consisting of the entries in this map.

Returns a value for the specified key in this map.

Returns true if this map contains no mappings.

Returns a set consisting of the keys in this map.

Puts a mapping in this map.

Removes the entries for the specified key.

Returns the number of mappings in this map.

Returns a set consisting of the values in this map.

Returns a string representation for this map.

Key and value in the entry.

How do you implement MyMap? If you use an ArrayList and store a new entry at the end of the list, the

search time will be O(n). If you implement MyMap using a binary tree, the search time will be O(log n) if the tree is

well balanced. Nevertheless, you can implement MyMap using hashing to obtain an O(1) time search algorithm.

Listing 27.1 implements MyMap using separate chaining.

Listing 27.1 MyMap.h

 1 #ifndef MYMAP_H

 2 #define MYMAP_H
 3
 4 #include <vector>
 5 #include <string>
 6 #include <sstream>
 7 #include <stdexcept>
 8 #include <typeinfo>
 9 using namespace std;
 10
 11 int DEFAULT_INITIAL_CAPACITY = 4;
 12 float DEFAULT_MAX_LOAD_FACTOR = 0.75f;
 13 unsigned MAXIMUM_CAPACITY = 1 << 30;
 14
 15 template<typename K, typename V>
 16 class Entry // Represent an entry with key and value
 17 {
 18 public:
 19 Entry(K key, V value)
 20 {
 21 this->key = key;
 22 this->value = value;
 23 }
 24
 25 string toString() const
 26 {
 27 stringstream ss;
 28 ss << "[" << key << ", " << value << "]";
 29 return ss.str();
 30 }
 31
 32 K key;
 33 V value;
 34 };
 35
 36 template<typename K, typename V>
 37 class MyMap
 38 {
 39 public:
 40 MyMap();
 41 MyMap(int initialCapacity);
 42 MyMap(int initialCapacity, float loadFactorThreshold);
 43
 44 V put(K key, V value);
 45 V get(K key) const;
 46 int getSize() const;
 47 bool isEmpty() const;
 48 vector<Entry<K,V>> getEntries() const;
 49 vector<K> getKeys() const;
 50 vector<V> getValues() const;
 51 string toString() const;
 52 bool containsKey(K key) const;
 53 bool containsValue(V value) const;
 54 void remove(K key);
 55 void clear();
 56
 57 private:
 58 int size;
 59 float loadFactorThreshold;
 60 int capacity;

 61
 62 // Hash table is an array with each cell as a vector
 63 vector<Entry<K, V>>* table;
 64
 65 int hash(int hashCode) const;
 66 unsigned hashCode(K key) const;
 67 int supplementalHash(int h) const;
 68 int trimToPowerOf2(int initialCapacity);
 69 void rehash();
 70 void removeEntries();
 71 };
 72
 73 template<typename K, typename V>
 74 MyMap<K, V>::MyMap()
 75 {
 76 capacity = DEFAULT_INITIAL_CAPACITY;
 77 table = new vector<Entry<K, V>>[capacity];
 78 loadFactorThreshold = DEFAULT_MAX_LOAD_FACTOR;
 79 size = 0;
 80 }
 81
 82 template<typename K, typename V>
 83 MyMap<K, V>::MyMap(int initialCapacity)
 84 {
 85 capacity = initialCapacity;
 86 table = new vector<Entry<K, V>>[capacity];
 87 loadFactorThreshold = DEFAULT_MAX_LOAD_FACTOR;
 88 size = 0;
 89 }
 90
 91 template<typename K, typename V>
 92 MyMap<K, V>::MyMap(int initialCapacity, float loadFactorThreshold)
 93 {
 94 if (initialCapacity > MAXIMUM_CAPACITY)
 95 capacity = MAXIMUM_CAPACITY;
 96 else
 97 capacity = trimToPowerOf2(initialCapacity);
 98
 99 this->loadFactorThreshold = loadFactorThreshold;
100 table = new vector<Entry<K, V>>[capacity];
101 size = 0;
102 }
103
104 template<typename K, typename V>
105 V MyMap<K, V>::put(K key, V value)
106 {
107 if (get(key) != NULL)
108 { // The key is already in the map
109 int bucketIndex = hash(hashCode(key));
110 for (Entry<K, V>& entry: table[bucketIndex])
111 {
112 if (entry.key == key)
113 {
114 V oldValue = entry.value;
115 // Replace old value with new value
116 entry.value = value;
117 // Return the old value for the key
118 return oldValue;
119 }
120 }

121 }
122
123 // Check load factor
124 if (size >= capacity * loadFactorThreshold)
125 {
126 if (capacity == MAXIMUM_CAPACITY)
127 throw runtime_error("Exceeding maximum capacity");
128
129 rehash();
130 }
131
132 int bucketIndex = hash(hashCode(key));
133
134 // Add a new entry (key, value) to hashTable[index]
135 table[bucketIndex].push_back(Entry<K, V>(key, value));
136
137 size++; // Increase size
138
139 return value;
140 }
141
142 template<typename K, typename V>
143 V MyMap<K, V>::get(K key) const
144 {
145 int bucketIndex = hash(hashCode(key));
146
147 for (Entry<K, V>& entry: table[bucketIndex])
148 if (entry.key == key)
149 return entry.value;
150
151 return NULL;
152 }
153
154 template<typename K, typename V>
155 bool MyMap<K, V>::isEmpty() const
156 {
157 return size == 0;
158 }
159
160 template<typename K, typename V>
161 vector<Entry<K, V>> MyMap<K, V>::getEntries() const
162 {
163 vector<Entry<K, V>> v;
164
165 for (int i = 0; i < capacity; i++)
166 {
167 for (Entry<K, V>& entry: table[i])
168 v.push_back(entry);
169 }
170
171 return v;
172 }
173
174 template<typename K, typename V>
175 bool MyMap<K, V>::containsKey(K key) const
176 {
177 return get(key) != NULL;
178 }
179
180 template<typename K, typename V>

181 bool MyMap<K, V>::containsValue(V value) const
182 {
183 for (int i = 0; i < capacity; i++)
184 {
185 for (Entry<K, V> entry: table[i])
186 if (entry.value == value)
187 return true;
188 }
189
190 return false;
191 }
192
193 template<typename K, typename V>
194 void MyMap<K, V>::remove(K key)
195 {
196 int bucketIndex = hash(hashCode(key));
197
198 // Remove the first entry that matches the key from a bucket
199 if (table[bucketIndex].size() > 0)
200 {
201 for (auto p = table[bucketIndex].begin();
202 p != table[bucketIndex].end(); p++)
203 if (p->key == key)
204 {
205 table[bucketIndex].erase(p);
206 size--; // Decrease size
207 break; // Remove just one entry that matches the key
208 }
209 }
210 }
211
212 template<typename K, typename V>
213 void MyMap<K, V>::clear()
214 {
215 size = 0;
216 removeEntries();
217 }
218
219 template<typename K, typename V>
220 void MyMap<K, V>::removeEntries()
221 {
222 for (int i = 0; i < capacity; i++)
223 {
224 table[i].clear();
225 }
226 }
227
228 template<typename K, typename V>
229 vector<K> MyMap<K, V>::getKeys() const
230 {
231 // Left as exercise
232 }
233
234 template<typename K, typename V>
235 vector<V> MyMap<K, V>::getValues() const
236 {
237 // Left as exercise
238 }
239
240 template<typename K, typename V>

241 string MyMap<K, V>::toString() const
242 {
243 stringstream ss;
244 ss << "[";
245
246 for (int i = 0; i < capacity; i++)
247 {
248 for (Entry<K, V>& entry: table[i])
249 ss << entry.toString();
250 }
251
252 ss << "]";
253 return ss.str();
254 }
255
256 template<typename K, typename V>
257 unsigned MyMap<K, V>::hashCode(K key) const
258 {
259 return typeid(key).hash_code();
260 }
261
262 template<typename K, typename V>
263 int MyMap<K, V>::hash(int hashCode) const
264 {
265 return supplementalHash(hashCode) & (capacity - 1);
266 }
267
268 template<typename K, typename V>
269 int MyMap<K, V>::supplementalHash(int h) const
270 {
271 h ^= (h >> 20) ^ (h >> 12);
272 return h ^ (h >> 7) ^ (h >> 4);
273 }
274
275 template<typename K, typename V>
276 int MyMap<K, V>::trimToPowerOf2(int initialCapacity)
277 {
278 int capacity = 1;
279 while (capacity < initialCapacity) {
280 capacity <<= 1;
281 }
282
283 return capacity;
284 }
285
286 template<typename K, typename V>
287 void MyMap<K, V>::rehash()
288 {
289 vector<Entry<K, V>> set = getEntries(); // Get entries
290 capacity <<= 1; // Double capacity
291 delete[] table; // Delete old hash table
292 table = new vector<Entry<K, V>>[capacity]; // Create a new hash table
293 size = 0; // Reset size to 0
294
295 for (Entry<K, V>& entry: set)
296 put(entry.key, entry.value); // Store to new table
297 }
298
299 template<typename K, typename V>

300 int MyMap<K, V>::getSize() const
301 {
302 return size;
303 }
304
305 #endif

<margin note (line 10)>default initial capacity

<margin note (line 11)>default load factor

<margin note (line 12)>maximum capacity

<margin note (line 16)>class Entry

<margin note (line 19)>Entry constructor

<margin note (line 25)>toString() for entry

<margin note (line 32)>key in the entry

<margin note (line 33)>value in the entry

<margin note (line 37)>class MyMap

<margin note (line 40)>MyMap constructors

<margin note (line 44)>MyMap public functions

<margin note (line 58)>MyMap private data

<margin note (line 58)>MyMap private data

<margin note (line 63)>MyMap private functions

<margin note (line 74)>no-arg constructor

<margin note (line 77)>array for hash table

<margin note (line 83)>constructor

<margin note (line 92)>constructor

<margin note (line 105)>put

<margin note (line 116)>replace old value

<margin note (line 129)>rehash

<margin note (line 135)>add a new entry

<margin note (line 143)>get

<margin note (line 148)>a match

<margin note (line 106)>isEmpty

<margin note (line 161)>getEntries

<margin note (line 161)>add an entry to v

<margin note (line 175)>containsKey

<margin note (line 181)>containsValue

<margin note (line 186)>a match

<margin note (line 194)>remove

<margin note (line 203)>a match

<margin note (line 205)>remove an entry

<margin note (line 213)>clear

<margin note (line 216)>remove all entries

<margin note (line 220)>remove entries

<margin note (line 229)>getKeys

<margin note (line 235)>getValues

<margin note (line 241)>toString

<margin note (line 257)>hashCode

<margin note (line 263)>hash

<margin note (line 269)>supplementalHash

<margin note (line 276)>trimToPowerOf2

<margin note (line 287)>rehash

<end listing 27.1>

The MyMap class implements the MyMap interface using separate chaining. The parameters that determine the

hash-table capacity (line 60) and load factors (line 59) are defined in the class. The default initial capacity is 4 (line

10) and the maximum capacity is 302 (line 12). The current hash-table capacity is designed as a value of the power

of 2. The default load-factor threshold is 0.75f (line 11). You can specify a custom load-factor threshold when

constructing a map. The custom load-factor threshold is stored in loadFactorThreshold (line 59). The data

field size denotes the number of entries in the map (line 58). The hash table is an array. Each cell in the array is a

vector (line 63).

<margin note>hash-table parameters

Three constructors are provided to construct a map. You can construct a default map with the default capacity

and load-factor threshold using the no-arg constructor (lines 73–80), a map with the specified capacity and a default

load-factor threshold (lines 82–89), and a map with the specified capacity and load-factor threshold (lines 91–102).

<margin note>three constructors

The put(key, value) function adds a new entry into the map (lines 104-140). The function first tests if the

key is already in the map (line 107), if so, it locates the entry and replaces the old value with the new value in the

entry for the key (line 116) and the old value is returned (line 118). If the key is new in the map, the new entry is

created in the map (line 135). Before inserting the new entry, the function checks whether the size exceeds the load-

factor threshold (line 124). If so, the program invokes rehash() (line 129) to increase the capacity and store

entries into the new larger hash table.

<margin note>put

The rehash() function first copies all entries into a vector (line 289), doubles the capacity (line 290), deletes

the current hash table (line 291), creates a new hash table (line 292), and resets the size to 0 (line 293). The function

then copies the entries into the new hash table (lines 295–296). The rehash function takes O(capacity) time. If no

rehash is performed, the put function takes O(1) time to add a new entry.

<margin note>rehash

The get(key) function returns the value of the first entry with the specified key (lines 143–152). This function

takes O(1) time. This function invokes hashCode(key), which returns the hash code for the key (line 259).

<margin note>get

<margin note>hashCode

The hash() function invokes the supplementalHash to ensure that the hashing is evenly distributed to

produce an index for the hash table (lines 263–266). This function takes O(1) time.

<margin note>hash

The remove(key) function removes the entry with the specified key in the map (lines 193–210). This function

takes O(1) time.

<margin note>remove

The getSize() function simply returns the size of the map (lines 299–303). This function takes O(1) time.

<margin note>getSize

The getKeys() function returns all keys in the map as a set. The function finds the keys from each bucket and

adds them to a set (lines 229–232). This function takes O(capacity) time. For the implementation of this function,

see Programming Exercise 27.10.

<margin note>getKeys

The getValues() function returns all values in the map. The function examines each entry from all buckets

and adds it to a set (lines 234–238). This function takes O(capacity) time. For the implementation of this function,

see Programming Exercise 27.11.

<margin note>values

The clear function removes all entries from the map (lines 212–217). It invokes removeEntries(), which

deletes all entries in the buckets (lines 222–225). The removeEntries() function (lines 219-226) takes

O(capacity) time to clear all entries in the table.

<margin note>clear

<margin note>removeEntries

The containsKey(key) function checks whether the specified key is in the map by invoking the get

function (lines 174–178). Since the get function takes O(1) time, the containsKey(key) function takes O(1)

time.

<margin note>containsKey

The containsValue(value) function checks whether the value is in the map (lines 181–191). This

function takes O capacity size time. It is actually O(capacity), since .capacity size

<margin note>containsValue

The getEntries() function returns a vector that contains all entries in the map (lines 160–172). This function

takes O(capacity) time.

<margin note>getEntries

The isEmpty() function simply returns true if the map is empty (lines 154–158). This function takes O(1)

time.

<margin note>isEmpty

Table 27.1 summarizes the time complexities of the functions in MyMap.

Table 27.1

Time Complexities for Functions in MyMap

Functions Time

clear() O(capacity)

containsKey(key: Key) O(1)

containsValue(value: V) O(capacity)

getEntries() O(capacity)

get(key: K) O(1)

isEmpty() O(1)

getKeys() O(capacity)

put(key: K, value: V) O(1)

remove(key: K) O(1)

getSize() O(1)

getValues() O(capacity)

rehash() O(capacity)

Since rehashing does not happen very often, the time complexity for the put function is O(1). Note that the

complexities of the clear, getEntries, getKeys, getValues, and rehash functions depend on

capacity, so to avoid poor performance for these functions you should choose an initial capacity carefully.

Listing 27.2 gives a test program that uses MyMap.

Listing 27.2 TestMyMap.cpp

 1 #include <iostream>
 2 #include <string>
 3 #include "MyMap.h"
 4 using namespace std;
 5
 6 int main()
 7 {
 8 // Create a map

 9 MyMap<string, int> map;
 10 map.put("Smith", 30);
 11 map.put("Anderson", 31);
 12 map.put("Lewis", 29);
 13 map.put("Cook", 29);
 14 map.put("Smith", 65);
 15
 16 cout << "Entries in map: " << map.toString() << endl;
 17 cout << "The age for " << "Lewis is " <<
 18 map.get("Lewis") << endl;
 19 cout << "Is Smith in the map? " <<
 20 (map.containsKey("Smith") ? "true" : "false") << endl;
 21 cout << "Is age 33 in the map? " <<
 22 (map.containsValue(33) ? "true" : "false") << endl;
 23
 24 map.remove("Smith");
 25 cout << "Entries in map: " << map.toString() << endl;
 26
 27 map.clear();
 28 cout << "Entries in map: " << map.toString() << endl;
 29
 30 return 0;
 31 }
<output>

Entries in map: [[Smith, 65][Anderson, 31][Lewis, 29][Cook, 29]]

The age for Lewis is 29

Is Smith in the map? true

Is age 33 in the map? false

Entries in map: [[Anderson, 31][Lewis, 29][Cook, 29]]

Entries in map: []

<end output>

<margin note (line 8)>create a map

<margin note (line 9)>put entries

<margin note (line 15)>display entries

<margin note (line 17)>get value

<margin note (line 19)>is key in map?

<margin note (line 21)>is value in map?

<margin note (line 23)>remove entry

<margin note (line 26)>clear map

<end listing 27.2>

The program creates a map using MyMap (line 9) and adds five entries into the map (lines 10–14). Line 10 adds

key Smith with value 30 and line 14 adds Smith with value 65. The latter value replaces the former value. The

map actually has only four entries. The program displays the entries in the map (line 16), gets a value for a key (line

18), checks whether the map contains the key (line 20) and a value (line 22), removes an entry with the key Smith

(line 24), and redisplays the entries in the map (line 25). Finally, the program clears the map (line 27) and displays

an empty map (line 28).

<check point>

27.20 What is 1 << 30 in line 13 in Listing 27.1? What are the integers resulted from 1 << 1, 1 << 2, and 1

<< 3?

27.21 What are the integers resulted from 32 >> 1, 32 >> 2, 32 >> 3, and 32 >> 4?

27.22 In Listing 27.2, will the program work if vector is replaced by list?

27.23 Describe how the put(key, value) function is implemented in the MyMap class.

27.24 Show the printout of the following code.

MyMap<String, String> map = new MyMap<>();

map.put("Texas", "Dallas");

map.put("Oklahoma", "Norman");

map.put("Texas", "Austin");

map.put("Oklahoma", "Tulsa");

cout << map.get("Texas") << endl;

cout << map.getSize() << endl;

<end check point>

27.8 Implementing Set Using Hashing

<key point>

A hash set can be implemented using a hash map.

<end key point>

A set (introduced in Chapter 22) is a data structure that stores distinct values. The C++ STL defines the set and

multiset for modeling sets. You can implement them using the same approach as for implementing MyMap. The

only difference is that key/value pairs are stored in the map, while elements are stored in the set.

We design our custom set class to mirror set and name the it MySet, as shown in Figure 27.10.

<margin note>MySet

Figure 27.10

MySet implements the set class.

 MySet<K>

-size: int

-capacity: int

-loadFactorThreshold: float

-table: vector<K>*

+MySet()

+MySet(capacity: int)

+MySet(capacity: int, loadFactorThreshold:
float)

+clear(): void

+contains(key: K): bool const

+isEmpty(): bool

+add(key: K): bool

+remove(key: K): bool

+getSize(): int const

+getKeys(): vector<K> const

+toString(): string const

The number of the keys in the set.

table points an array of buckets, each of which is a vector.

Load factor of the map.

The size of the array for hash table.

Creates an empty set with default capacity 4 and default
load factor threshold 0.75.

Creates a set with a specified capacity and default load
factor threshold 0.75.

Creates a set with a specified capacity and load factor
threshold.

Removes all keys from this set.

Returns true if this set contains the specified key.

Returns true if this set contains no set keys.

Adds a key in this set. Return true if successful.

Removes the specified key. Return true if successful.

Returns the number of keys in this set.

Returns the keys in the set to a vector.

Returns a string representation for this set.

Listing 27.4 shows the MySet interface and Listing 27.5 implements MySet using separate chaining.

Listing 27.3 MySet.h

 1 #ifndef MYSet_H
 2 #define MYSet_H
 3
 4 #include <vector>
 5 #include <string>
 6 #include <sstream>
 7 #include <stdexcept>
 8 #include <typeinfo>
 9 using namespace std;
 10
 11 int DEFAULT_INITIAL_CAPACITY = 4;
 12 float DEFAULT_MAX_LOAD_FACTOR = 0.75f;
 13 unsigned MAXIMUM_CAPACITY = 1 << 30;
 14
 15 template<typename K>

 16 class MySet
 17 {
 18 public:
 19 MySet();
 20 MySet(int initialCapacity);
 21 MySet(int initialCapacity, float loadFactorThreshold);
 22
 23 int getSize() const;
 24 bool isEmpty() const;
 25 bool contains(K key) const;
 26 bool add(K key);
 27 bool remove(K key);
 28 void clear();
 29 vector<K> getKeys() const;
 30 string toString() const;
 31
 32 private:
 33 int size;
 34 float loadFactorThreshold;
 35 int capacity;
 36
 37 // Hash table is an array with each cell as a vector
 38 vector<K>* table;
 39
 40 int hash(int hashCode) const;
 41 unsigned hashCode(K key) const;
 42 int supplementalHash(int h) const;
 43 int trimToPowerOf2(int initialCapacity);
 44 void rehash();
 45 void removeKeys();
 46 };
 47
 48 template<typename K>
 49 MySet<K>::MySet()
 50 {
 51 capacity = DEFAULT_INITIAL_CAPACITY;
 52 table = new vector<K>[capacity];
 53 loadFactorThreshold = DEFAULT_MAX_LOAD_FACTOR;
 54 size = 0;
 55 }
 56
 57 template<typename K>
 58 MySet<K>::MySet(int initialCapacity)
 59 {
 60 capacity = initialCapacity;
 61 table = new vector<K>[capacity];
 62 loadFactorThreshold = DEFAULT_MAX_LOAD_FACTOR;
 63 size = 0;
 64 }
 65
 66 template<typename K>
 67 MySet<K>::MySet(int initialCapacity, float loadFactorThreshold)
 68 {
 69 if (initialCapacity > MAXIMUM_CAPACITY)
 70 capacity = MAXIMUM_CAPACITY;
 71 else
 72 capacity = trimToPowerOf2(initialCapacity);
 73
 74 this->loadFactorThreshold = loadFactorThreshold;

 75 table = new vector<K>[capacity];
 76 size = 0;
 77 }
 78
 79 template<typename K>
 80 bool MySet<K>::add(K key)
 81 {
 82 if (contains(key)) return false; // key is already in the set
 83
 84 // Check load factor
 85 if (size >= capacity * loadFactorThreshold)
 86 {
 87 if (capacity == MAXIMUM_CAPACITY)
 88 throw runtime_error("Exceeding maximum capacity");
 89
 90 rehash();
 91 }
 92
 93 int bucketIndex = hash(hashCode(key));
 94
 95 // Add a new entry (key, value) to hashTable[index]
 96 table[bucketIndex].push_back(key);
 97
 98 size++; // Increase size
 99
100 return true;
101 }
102
103 template<typename K>
104 bool MySet<K>::isEmpty() const
105 {
106 return size == 0;
107 }
108
109 template<typename K>
110 bool MySet<K>::contains(K key) const
111 {
112 int bucketIndex = hash(hashCode(key));
113
114 for (K& e: table[bucketIndex])
115 if (e == key)
116 return true;
117
118 return false;
119 }
120
121 template<typename K>
122 bool MySet<K>::remove(K key)
123 {
124 int bucketIndex = hash(hashCode(key));
125
126 // Remove the first entry that matches the key from a bucket
127 if (table[bucketIndex].size() > 0)
128 {
129 for (auto p = table[bucketIndex].begin();
130 p != table[bucketIndex].end(); p++)
131 if (*p == key)
132 {
133 table[bucketIndex].erase(p);
134 size--; // Decrease size

135 return true; // Remove just one entry that matches the key
136 }
137 }
138
139 return false;
140 }
141
142 template<typename K>
143 void MySet<K>::clear()
144 {
145 size = 0;
146 removeKeys();
147 }
148
149 template<typename K>
150 vector<K> MySet<K>::getKeys() const
151 {
152 vector<K> v;
153
154 for (int i = 0; i < capacity; i++)
155 {
156 for (K& e: table[i])
157 v.push_back(e);
158 }
159
160 return v;
161 }
162
163 template<typename K>
164 void MySet<K>::removeKeys()
165 {
166 for (int i = 0; i < capacity; i++)
167 {
168 table[i].clear();
169 }
170 }
171
172 template<typename K>
173 string MySet<K>::toString() const
174 {
175 stringstream ss;
176 ss << "[";
177
178 for (int i = 0; i < capacity; i++)
179 {
180 for (K& e: table[i])
181 ss << e << " ";
182 }
183
184 ss << "]";
185 return ss.str();
186 }
187
188 template<typename K>
189 unsigned MySet<K>::hashCode(K key) const
190 {
191 return typeid(key).hash_code();
192 }
193
194 template<typename K>

195 int MySet<K>::hash(int hashCode) const
196 {
197 return supplementalHash(hashCode) & (capacity - 1);
198 }
199
200 template<typename K>
201 int MySet<K>::supplementalHash(int h) const
202 {
203 h ^= (h >> 20) ^ (h >> 12);
204 return h ^ (h >> 7) ^ (h >> 4);
205 }
206
207 template<typename K>
208 int MySet<K>::trimToPowerOf2(int initialCapacity)
209 {
210 int capacity = 1;
211 while (capacity < initialCapacity) {
212 capacity <<= 1;
213 }
214
215 return capacity;
216 }
217
218 template<typename K>
219 void MySet<K>::rehash()
220 {
221 vector<K> set = getKeys(); // Get entries
222 capacity <<= 1; // Double capacity
223 delete[] table; // Delete old hash table
224 table = new vector<K>[capacity]; // Create a new hash table
225 size = 0; // Reset size to 0
226
227 for (K& e: set)
228 add(e); // Store to new table
229 }
230
231 template<typename K>
232 int MySet<K>::getSize() const
233 {
234 return size;
235 }
236
237 #endif
<margin note (line 11)>default initial capacity

<margin note (line 12)>default max load factor

<margin note (line 13)>maximum capacity

<margin note (line 16)>class MySet

<margin note (line 33)>size

<margin note (line 35)>current capacity

<margin note (line 34)>load-factor threshold

<margin note (line 38)>hash table

<margin note (line 49)>no-arg constructor

<margin note (line 58)>constructor

<margin note (line 67)>constructor

<margin note (line 80)>add

<margin note (line 104)>isEmpty

<margin note (line 110)>contains

<margin note (line 122)>remove

<margin note (line 143)>clear

<margin note (line 173)>toString

<margin note (line 195)>hash

<margin note (line 201)>supplementalHash

<margin note (line 208)>trimToPowerOf2

<margin note (line 219)>rehash

<margin note (line 232)>getSize

<end listing 27.3>

Implementing MySet is very similar to implementing MyMap except that the keys are stored in the hash table for

MySet, but the entries (key/value pairs) are stored in the hash table for MyMap.

<margin note>MySet vs. MyMap

Three constructors are provided to construct a set. You can construct a default set with the default capacity and load

factor using the no-arg constructor (lines 48–55), a set with the specified capacity and a default load factor (lines

57–64), and a set with the specified capacity and load factor (lines 66–77).

<margin note>three constructors

The add(key) function adds a new key into the set. The function first checks if the key is already in the set

(line 82). If so, the function returns false. The function then checks whether the size exceeds the load-factor

threshold (line 85). If so, the program invokes rehash() (line 90) to increase the capacity and store keys into the

new larger hash table.

<margin note>add

The rehash() function first copies all keys in a list (line 221), doubles the capacity (line 222), obtains a new

threshold (line 223), creates a new hash table (line 224), and resets the size to 0 (line 225). The function then copies

the keys into the new larger hash table (lines 227–228). The rehash function takes O(capacity) time. If no rehash

is performed, the add function takes O(1) time to add a new key.

<margin note>rehash

The clear function removes all keys from the set (lines 142–147). It invokes removeKeys(), which clears

all table cells (line 168). Each table cell is a vector that stores the keys with the same hash code. The

removeKeys() function takes O(capacity) time.

<margin note>clear

The contains(key) function checks whether the specified key is in the set by examining whether the

designated bucket contains the key (lines 109–119). This function takes O(1) time.

<margin note>contains

The remove(key) function removes the specified key in the set (lines 121–140). This function takes O(1)

time.

<margin note>remove

The getSize() function simply returns the number of keys in the set (lines 231–235). This function takes O(1)

time.

<margin note>size

The hashCode, hash, supplementalHash, and trimToPowerOf2 are the same as in the MyMap class.

Table 27.2 summarizes the time complexity of the functions in MySet.

Table 27.2

Time Complexities for Functions in MySet

Functions Time

clear() O(capacity)

contains(k: K) O(1)

add(k: K) O(1)

remove(k: K) O(1)

isEmpty() O(1)

getSize() O(1)

getKeys() O(size)

rehash() O(capacity)

Listing 27.4 gives a test program that uses MySet.

Listing 27.4 TestMySet.cpp

 1 #include <iostream>
 2 #include <string>
 3 #include "MySet.h"
 4 using namespace std;
 5
 6 int main()
 7 {
 8 // Create a MySet
 9 MySet<string> set;
 10 set.add("Smith");
 11 set.add("Anderson");
 12 set.add("Lewis");
 13 set.add("Cook");
 14 set.add("Smith");
 15
 16 cout << "Keys in set: " << set.toString() << endl;
 17 cout << "Number of keys in set: " << set.getSize() << endl;
 18 cout << "Is Smith in set? " << set.contains("Smith") << endl;
 19
 20 set.remove("Smith");
 21 cout << "Names in set are ";
 22 for (string s: set.getKeys())
 23 cout << s << " ";
 24
 25 set.clear();
 26 cout << "\nKeys in set: " << set.toString() << endl;
 27
 28 return 0;
 29 }

<output>

Keys in set: [Cook Anderson Smith Lewis]

Number of keys in set: 4

Is Smith in set? true

Names in set are Cook Anderson Lewis

Keys in set: []

<end output>

<margin note (line 4)>create a set

<margin note (line 5)>add keys

<margin note (line 11)>display keys

<margin note (line 12)>set size

<margin note (line 15)>remove key

<margin note (line 17)>for-each loop

<margin note (line 20)>clear set

<end listing 27.6>

The program creates a set using MySet (line 4) and adds five keys to the set (lines 5–9). Line 5 adds Smith and

line 9 adds Smith again. Since only nonduplicate keys are stored in the set, Smith appears in the set only once.

The set actually has four keys. The program displays the keys (line 11), gets its size (line 12), checks whether the set

contains a specified key (line 13), and removes an key (line 15). Since the keys in a set are iterable, a for-each loop

is used to traverse all keys in the set (lines 17–18). Finally, the program clears the set (line 20) and displays an

empty set (line 21).

<check point>

27.25 Describe how the add(k) function is implemented in the MySet class.

27.26 Describe how the remove(k) function is implemented in the MySet class.

27.27 Describe how the contains(k) function is implemented in the MySet class.

<end check point>

Key Terms

associative array 998

cluster 1002

dictionary 998

double hashing 1003

hash code 999

hash function 998

hash map 1016

hash set 1016

hash table 998

linear probing 1001

load factor 1005

open addressing 1001

perfect hash function 998

polynomial hash code 1000

quadratic probing 1002

rehashing 1005

secondary clustering 1003

separate chaining 1005

Chapter Summary

1. A map is a data structure that stores entries. Each entry contains two parts: a key and a value. The key is

also called a search key, which is used to search for the corresponding value. You can implement a map to

obtain O(1) time complexity on searching, retrieval, insertion, and deletion using the hashing technique.

2. A set is a data structure that stores elements. You can use the hashing technique to implement a set to

achieve O(1) time complexity on searching, insertion, and deletion for a set.

3. Hashing is a technique that retrieves the value using the index obtained from a key without performing a

search. A typical hash function first converts a search key to an integer value called a hash code, then

compresses the hash code into an index to the hash table.

4. A collision occurs when two keys are mapped to the same index in a hash table. Generally, there are two

ways for handling collisions: open addressing and separate chaining.

5. Open addressing is the process of finding an open location in the hash table in the event of collision. Open

addressing has several variations: linear probing, quadratic probing, and double hashing.

6. The separate chaining scheme places all entries with the same hash index into the same location, rather

than finding new locations. Each location in the separate chaining scheme is called a bucket. A bucket is a

container that holds multiple entries.

Test Questions

Do the test questions for this chapter online at www.cs.armstrong.edu/liang/intro9e/test.html.

Programming Exercises

 **27.1 (Implement MyMap using open addressing with linear probing) Create a new concrete class that

implements MyMap using open addressing with linear probing. For simplicity, use f(key) = key

% size as the hash function, where size is the hash-table size. Initially, the hash-table size is 4. The

table size is doubled whenever the load factor exceeds the threshold (0.5).

 **27.2 (Implement MyMap using open addressing with quadratic probing) Create a new concrete class that

implements MyMap using open addressing with quadratic probing. For simplicity, use f(key) =

key % size as the hash function, where size is the hash-table size. Initially, the hash-table size is

4. The table size is doubled whenever the load factor exceeds the threshold (0.5).

 **27.3 (Implement MyMap using open addressing with double hashing) Create a new concrete class that

implements MyMap using open addressing with double hashing. For simplicity, use f(key) = key

% size as the hash function, where size is the hash-table size. Initially, the hash-table size is 4.

The table size is doubled whenever the load factor exceeds the threshold (0.5).

 **27.4 (Modify MyMap with duplicate keys) Modify MyMap to allow duplicate keys for entries. You need to

modify the implementation for the put(key, value) function. Also add a new function named

getAll(key) that returns a set of values that match the key in the map.

 **27.5 (Implement MySet using MyMap) Implement MySet using MyMap. Note that you can create entries

with (key, key), rather than (key, value).

 **27.6 (Implement floatToIntBits) Write the following function that returns a 32-bit float value as an

int. Note that the float value and int have the same binary representation.

 int floatToIntBits(float value)

 **27.7 (Implement doubleToLongLongBits) Write the following function that returns a 64-bit double

value as a long long. Note that the long long value and double have the same binary representation.

 int doubleToLongLongBits(double value)

 **27.8 (Implement hash_code for string) Write a function that returns a hash code for string using the

approach described in Section 27.3.2 with b value 31. The function header is as follows:

 int hashCodeForString(string& s)

*27.9 (Implement getKeys) Implement the getKeys function defined in Listing 24.1.

*27.10 (Implement getValues) Implement the getValues function defined in Listing 24.1.

*27.11 (Implement MyMap with iterator) Modify Listing 24.1 to define an iterator class and add the functions

begin() and end() that return an iterator for traversing the entries in the map.

*27.12 (Implement MyMultiMap) Modify Listing 24.1 to implement MyMultiMap to store key/value

entries with duplicate keys allowed.

*27.13 (Implement MySet with iterator) Modify Listing 24.3 to define an iterator class and add the functions

begin() and end() that return an iterator for traversing the keys in the map.

*27.14 (Implement MyMultiSet) Modify Listing 24.3 to implement MyMultiSet to store keys with

duplicate keys allowed.

*27.15 (Compare MySet and vector) MySet is defined in Listing 24.3. Write a program that generates

1000000 random integers between 0 and 999999, shuffles them, and stores them in a vector and

in a MySet. Generate a list of 1000000 random integers between 0 and 1999999. For each number

in the list, test if it is in the array list and in the hash set. Run your program to display the total test

time for the array list and for the hash set.

