
Compare C++ Syntax and Features with Java

Here is a brief summary that compares C++ syntax and features with Java

C++ Java

cout << "something" << endl; System.out.println("something");
int x;
cin >> x;

Scanner input = new Scanner(System.in);
int x = input.nextInt();

main function (not in a class, return int) main method in a class (void)

namespace pacakge
using namespace import a package

short, int, long, unsigned short, unsigned
int, unsigned long, float, double, long
double, char, bool

byte, short, int, long, float, double, char,
boolean

Casting: (int)x or static_cast<int>x (int)x
operand evaluation order a + b a + b (strictly from left to right)

||, &&, ! ||, &&, !, ^, |, &
if, switch, conditional operator if, switch, conditional operator

for, while, do-while for, while, do-while
break, continue break, continue

function method
Pass-by-value Pass-by-value
Pass-by-reference for any type No pass-by-reference
overloading overloading
Ambiguous overloading Ambiguous overloading
Global variables
Static local variables

int counts[4] int[] counts, int counts[]

new int[4];
 Arrays are objects
counts = counts1; (not allowed) counts = counts1; (OK)

Static allocation and heap allocation (new)
Bound checking (no) Bound checking (checked at runtime)

Cannot get the length from the array counts.length returns the length of an array
f(counts, SIZE) f(counts)

pointers
C-string

Circle class Circle class
Create an object Circle c; // Create an
object, c is the name of the object. The
object is created using the no-arg
constructor.

Circle c; // Declare a reference variable, c
is just a reference to the object

Circle c(5.5);
c.getArea();

Circle* p = new Circle(); // Dynamic
creation

Circle c = new Circle(); // All objects in
Java are created dynamically

p->getArea(); or (*p).getArea() c.getArea();
delete p; c = null; Automatically removed

Pass-by-value function f(Circle c)

Invoke f(c1)

Pass-by-reference function(Circle& c)
Invoke f(c1)

Pass-by-reference via pointer
function(Circle* p)

invoke f(&c1)

Pass-by-value in Java
method m(Circle c)

invoke m(c1)

The string class The String class
static members (data fields and functions) static members (data fields and methods)
Header files
Define class in a .h file and implement it in
a .cpp file

Define class and implement all methods in
the same class .java file

Include header file
inclusion guard (to avoid multiple
inclusion) ifndef then define,

Default constructor: same Default constructor: same

Copy constructor clone() method
Circle c1; Circle c2(5.5);
c1 = c2; // Still two different objects

Circle c1 = new Circle(); Circle c2 = new
Circle(5.5);
c1 = c2; // c1 and c2 refer to the same

object
Anonymous object
Circle().getArea();

new Circle().getArea()

destructor The Object class has the finalize() method.
dynamic_cast<type*>(pointer) (type)objectReference
Constructor chaining: same Constructor chaining: same
Destructor chaining Invoking finalize() methods from the

current class on to the Object class
The functions invoked from a constructor
in C++ are not polymorphic, i.e., the
functions are statically bound.

The methods invoked from a constructor in
Java are polymorphic, i.e., the methods are
dynamically bound.

Immutable objects: (memberwise copy) Immutable objects: String, Integer,
String s1;
String s2;

s1 = s2;

Inheritance (Derived class, base class) Inheritance (subclass, superclass)
Constructor chaining Constructor chaining
class A : public B
{

};

class A extends B
{

}

private, protected for the members of the
class

private, protected for the members of the
class

public class A (no such thing in C++) public class,
Encapsulation, inheritance, and
polymorphism

Encapsulation, inheritance, and
polymorphism

Redefine functions No redefine functions and only override
functions

Override (virtual function) override
Abstract class Abstract class
class A
{
 public:
 virtual void m() = 0;
}

public abstract class A {
 public abstract void m();
}

No interface interface
Multiple inheritance No multiple inheritance in Java
class A : public B, public C
{
}

(wrong)
public class A extends B, C {
}

Text I/O

ifstream

Text I/O

Scanner

ofstream PrintWriter
Binary I/O

istream opened with binary mode
reinterpret_cast

Binary I/O

InputStream
OutputStream

FileInputStream
FileOutputStream

BufferedInputStream
BufferedOutputStream

ObjectInputStream
ObjectOutputStream

Operator overloading
s[0]
cout << s1
cin >> s1
s1 + s2
s1 < s2

Not in Java

Exception handling

try
{

}
catch (type e)
{

}
finally
{

}

throw an object or primitive type value

Exception

try
{

}
catch (ObjectType e)
{

}
finally
{

}

throw an object of Throwable instance

Templates

You can substitute a generic type with a
primitive type or object type

Generics

You can substitute a generic type with only
object type

STL

Collections framework

list, vector, deque

set, multiset, map, multimap

queue, stack, priority_queue

STL algorithms

Uses iterators extensively

Collection, List, Set, Map

HashSet, LinkedHashSet, TreeSet,
LinkedList, ArrayList,
HashMap, LinkedHashMap, TreeMap
Stack, Queue, Priority_Queue

No counterpart of algorithms and
algorithms are built in the API

foreach loop in C++11 (Visual C++ 2012)
for (type& e: collection)
{
}

foreach loop in Java
for (type e: collection)
{
}

auto type No auto type

