

© Copyright Y. Daniel Liang, 2007
8

Supplement II.B: Learning C++ Effectively with Visual C++

For Introduction to C++ Programming
By Y. Daniel Liang

0 Introduction

Supplement II.A, “Visual C++ Tutorial,” gives a brief
tutorial on how to use Visual C++. VC++ is not only a
powerful and productive Java program development tool, but
it is also a valuable pedagogical tool for teaching and
learning Java programming. This supplement shows how to use
VC++ effectively with the text.

The supplement is written for instructors, but it is also
useful to students.

1 Important Tips

The objective of the course is to teach C++, not Visual C++.
VC++ is a complex and powerful tool. All you need for this
course, however, is a small and simple set of features that
enable students to create, compile, run, and debug programs.
So students should avoid exploring unnecessary features.

If your students follow the instructions in Supplement II.A,
“Visual C++ Tutorial,” or the instructions from you,
students can master all essential skills in sixty minutes.
It is important that your students adhere to the
instructions to avoid frustrating mistakes. If a mistake is
made, simply read the instructions and restart from scratch.

2 VC++ as a Valuable Pedagogical Tool

The following sections demonstrate how to utilize VC++ in
the first seven chapters.

2.1 Using VC++ in Chapter 1

After Listing 1.1, you can start to cover how to create,
compile, and run a program in VC++.

2.2 Using VC++ in Chapter 2

You may start to introduce debugging when you cover
variables. You can use debug to show the value of a variable
in the memory and show the change of the value during
execution. Figure 1 shows a simple test program with
variable i.

© Copyright Y. Daniel Liang, 2007
9

Figure 1

Displaying values of variables in VC++ debugger.

2.3 Using VC++ in Chapter 3

Use the debugger to trace the if statements in Section 3.7,
“Nested UifU Statements,” as shown in Figure 2.

© Copyright Y. Daniel Liang, 2007
10

Figure 2

Trace the execution of an if statement.

2.4 Using VC++ in Chapter 4

Use the debugger to trace the while loop in Section 4.2,
“The while Loop,” as shown in Figure 3.

© Copyright Y. Daniel Liang, 2007
11

Figure 3

Trace the execution of a loop statement.

2.5 Using VC++ in Chapter 5

You can use the debugger to show the call stack, which is
very effective to help understand function invocation. Let
us use Listing 5.1 to demonstrate function invocation. Set a
breakpoint at line 6. Start debugger, and the debugger
pauses at Line 6. Choose Step into to step into the max
function, as shown in Figure 4. Now in the Message pane, you
will see the arguments are passed to the function.

© Copyright Y. Daniel Liang, 2007
12

Figure 4

Trace function invocation.

2.6 Using VC++ in Chapter 6

You can use the debugger to show the values of all the
elements in an array. Figure 5 shows debugging TestArray.cpp
in Listing 6.1.

© Copyright Y. Daniel Liang, 2007
13

Figure 5

You can see the change of values in an array.

2.7 Using VC++ in Chapter 7

You can use the debugger to show the relationship between a
variable and its pointer, as shown in Figure 6.

© Copyright Y. Daniel Liang, 2007
14

Figure 6

You can see the relationship between variable count and
its pointer variable p.

2.7 Using VC++ in Chapter 8

Figure 7 shows tracing recursive execution of the factorial
function.

© Copyright Y. Daniel Liang, 2007
15

Figure 7

Trace a recursive function invocation.

2.8 Using VC++ in Chapter 9

You can use the debugger to show the contents of an object.
Figure 8 shows debugging TestCircle.java in Listing 9.1.

© Copyright Y. Daniel Liang, 2007
16

Figure 8

You can see the change of values in an object.

You can use the debugger to demonstrate how arguments are
passed and to see the differences between passing primitive
type values and objects.

