

© Copyright Y. Daniel Liang, 2007

Supplement I.A: Glossary

For Introduction to C++ Programming, Third Edition
By Y. Daniel Liang

Chapter 1

 assembler A program that translates assembly-language
programs into machine code.

 assembly language A low-level programming language in
which a mnemonic is used to represent each of the
machine language instructions.

 bit A binary number 0 or 1.
 block A sequence of statements enclosed in braces ({}).
 block comment Enclosed between /* and */ on one or

several lines in the source code.
 bus A subsystem in the computer that connects all

other components in a computer.
 byte A unit of storage. Each byte consists of 8 bits.

The size of hard disk and memory is measured in bytes.
A megabyte is roughly a million bytes.

 cable modem Uses the TV cable line maintained by the
cable company. A cable modem is as fast as a DSL.

 central processing unit (CPU) A small silicon
semiconductor chip with millions of transistors that
executes instructions.

 comment Comments document what a program is and how it
is constructed. They are not programming statements and
are ignored by the compiler. In Java, comments are
preceded by two slashes (//) in a line or enclosed
between /* and */ in multiple lines.

 Compile error Errors reported by a compiler.
 compiler A software program that translates source code

(e.g., Java source code) into a machine language
program.

 console refers to text entry and display device of a
computer.

 Console input refers to text entry device of a
computer.

 Console output refers to display device of a computer.
 dot pitch The amount of space between pixels. The

smaller the dot pitch, the better the display.
 DSL (digital subscriber line) Uses a phone line and

can transfer data in a speed 20 times faster than a
regular modem.

 header file library files.

© Copyright Y. Daniel Liang, 2007

 hardware The physical aspect of the computer that can
be seen.

 hexadecimal numbers Numbers with radix 16.
 high-level programming language Are English-like and

easy to learn and program.
 Integrated Development Environment (IDE) Software that

helps programmers write code efficiently. IDE tools
integrate editing, compiling, building, debugging, and
online help in one graphical user interface.

 interpreter An interpreter reads one statement from
the source code, translates it to the machine code or
virtual machine code, and then executes it immediately.

 keyword (or reserved word) A word defined as part of
Java language, which have a specific meaning to the
compiler and cannot be used for other purposes in the
program.

 library C++ library contains predefined code for
developing C++ programs.

 line comment comment that begins with //.
 linker a software that links the object files to

produce an executable file.
 logic error errors occur when a program does not

perform the way it was intended.
 Low-level language refers to assembly language.
 machine language Is a set of primitive instructions

built into every computer. The instructions are in the
form of binary code, so you have to enter binary codes
for various instructions.

 main function The entry function where program
execution starts.

 memory Stores data and program instructions for CPU to
execute.

 modem A regular modem uses a phone line and can
transfer data in a speed up to 56,000 bps (bits per
second).

 motherboard In personal computers, the bus is built
into the computer’s motherboard, which is a circuit
case that connects the parts of a computer together.

 namespace Namespace is a mechanism to avoid naming
conflicts in a large program.

 network interface card (NIC) A device to connect a
computer to a local area network (LAN). The LAN is
commonly used in business, universities, and government
organizations. A typical type of NIC, called 10BaseT,
can transfer data at 10 Mbps.

© Copyright Y. Daniel Liang, 2007

 object file The machine-code file is also known as an
object file.

 operating system (OS) A program that manages and
controls a computer’s activities (e.g., Windows, Linux,
Solaris).

 paragraph comment comments enclosed between /* and
*/.

 pixel Tiny dots that form an image on the screen.
 preprocessor directive Instructions for the compilers.
 program Same as software.
 programming Write programs.
 runtime error An error that causes the program to

terminate abnormally.
 screen resolution Specifies the number of pixels per

square inch. The higher the resolution, the sharper and
clearer the image is.

 screen resolution Specifies the number of pixels per
square inch. The higher the resolution, the sharper and
clearer the image is.

 software The invisible instructions that control the
hardware and make it work.

 source code A program written in a programming language
such as Java.

 source program Same as source code.
 statement A unit of code that represents an action or

a sequence of actions.
 Statement terminator The semicolon required at the

end of each statement.
 storage devices The permanent storage for data and

programs. Memory is volatile, because information is
lost when the power is off. Program and data are
stored on secondary storage and moved to memory when
the computer actually uses them.

 stream insertion operator The << operator used by the
cout operator for sending output.

 syntax error Same as compile error.

© Copyright Y. Daniel Liang, 2007

Chapter 2

 algorithm Statements that describe how a problem is
solved in terms of the actions to be executed, and
specifies the order in which these actions should be
executed. Algorithms can help the programmer plan a
program before writing it in a programming language.

 assignment operator (=) Assigns a value to a variable.
 assignment statement A simple statement that assigns

a value to a variable using an assignment operator (=).
When a value is assigned to a variable, it replaces the
previous value of the variable, which is destroyed.

 C-Style cast (int)x is called the C-style cast.
 casting The process of converting a value from one

data type into another data type.
 cin -- A predefined object in C++ for reading data from

the keyboard.
 const The keyword for declaring a constant.
 constant A variable declared final in Java. A local

constant is a constant declared inside a function.
 data type Used to define variables to indicate what

kind of value the variable can hold.
 debugger A program that facilitates debugging. It

enables the program to be executed one statement at a
time and enables the contents of the variable to be
examined during execution.

 debugging The process of finding and fixing errors in a
program.

 declaration Define and allocate memory for variables.
 decrement operator (--) Subtracts one from a numeric

variable or a char variable.
 #define directive A compiler directive for defining

constants.
 double type A primitive data type to represent double

precision floating-point numbers with 14 to 15
significant digits of accuracy.

 expression Represents a computation involving values,
variables, and operators, which evaluates to a value.

 expression statement If an expression is used as a
statement, it is called an expression statement.

 float type A primitive data type to represent single
precision floating-point numbers with 6 to 7
significant digits of accuracy. The double type is used
to represent double precisions with 14 to 15
significant digits of accuracy.

© Copyright Y. Daniel Liang, 2007

 floating-point number A number that includes a
fractional part.

 identifier A name of a variable, function, class,
interface, or package.

 increment operator (++) Adds one to a numeric variable
or a char variable.

 incremental development and testing A programming
functionology that develop and test program
incrementally. This approach is efficient and
productive. It help eliminate and isolate errors.

 indentation The use of tabs and spaces to indent the
source code to make it easy to read and understand.

 int type A primitive data type to represent an integer
in the range from –231 (-2147483648) to 231–1
(2147483647).

 IPO stands for Input, Process, and Output.
 literal A constant value that appears directly in the

program. A literal may be numeric, character, boolean,
or null for object type.

 local variable A variable defined inside a function. An
initial value must be assigned to a local variable
before it is referenced.

 logic error An error that causes the program to
produce incorrect result.

 long type A primitive data type to represent an integer
in the range from –263 to 263–1.

 narrowing (of types) Casting a variable of a type
with a larger range to a variable of a type with a
smaller range.

 operand The operands are the values operated by an
operator.

 operator Operations for primitive data type values.
Examples of operators are +, -, *, /, and %.

 overflow value is too big to be stored.
 postdecrement The operator x--.
 postincrement The operator x++.
 predecrement The operator --x.
 preincrement The operator ++x.
 primitive data type The primitive data types are byte,

short, int, long, float, double, boolean, and char.
 pseudocode Algorithms can be described in natural

languages or in pseudocode (natural language mixed with
some programming code).

 short type A primitive data type that represents an
integer in the range from –215 (-32768) to 215–1

© Copyright Y. Daniel Liang, 2007

(32767).
 stream extraction operator (>>) The operator for

extracting data into a variable.
 underflow A value is too small to be stored in a

variable.
 Unix epoch January 1, 1970 GMT is known as the Unix

epoch because 1970 was the year when the Unix operating
system was formally introduced.

 variable Variables are used to store data and
computational results in the program.

 widening (of types) Casting a variable of a type with
a smaller range to a variable of a type with a larger
range.

© Copyright Y. Daniel Liang, 2007

Chapter 3

 boolean expression An expression that evaluates to a
Boolean value.

 boolean value true or false.
 boolean type A primitive data type for Boolean values

(true or false).
 break statement Break out of the switch statement.
 conditional operator The symbols ? and : appear

together in a conditional expression: booleanExpression
? expression1 : expression2;

 fall-through behavior In a switch statement, if Once a
case is matched, the statements starting from the
matched case are executed until a break statement or
the end of the switch statement is reached. This
phenomenon is referred to as the fall-through behavior.

 one-way if statement The statements are executed when
the condition is true.

 operator associativity Defines the order in which
operators will be evaluated in an expression if the
operators has the same precedence order.

 operator precedence Defines the order in which
operators will be evaluated in an expression.

 selection statement A statement that uses if or switch
statement to control the execution of the program.

 short-circuit evaluation Evaluation that stops when
the result of the expression has been determined, even
if not all the operands are evaluated. The evaluation
involving && or || are examples of short-circuit
evaluation.

 two-way if statement Which statements are executed are
dependent on the Boolean condition.

© Copyright Y. Daniel Liang, 2007

Chapter 4

 ASCII code American Standard Character Encoding Scheme.
 backslash (\) -- A character that precedes another

character to denote the following character has a
special meaning. For example, ‘\t’ denote a tab
character.

 char type -- A primitive data type that represents a
character.

 empty string A string containing no characters.
 encoding Representing a character using a binary code.
 escape character The character \ followed by a

character, together is called the escape character.
 instance function A function that is invoked from a

specific object.
 whitespace Characters ' ', '\t', '\f', '\r', and ‘\n'

are whitespaces characters.

© Copyright Y. Daniel Liang, 2007

Chapter 5

 break statement Break out of the current loop.
 continue statement Break out of the current

iteration.
 infinite loop A loop that runs indefinitely due to a

bug in the loop.
 iteration One time execution of the loop body.
 loop A structure that control repeated executions of

a block of statements.
 loop-continuation-condition A Boolean expression

that controls the execution of the body. After each
iteration, the loop-continuation-condition is
reevaluated. If the condition is true, the execution of
the loop body is repeated. If the condition is false,
the loop terminates.

 loop body The part of the loop that contains the
statements to be repeated.

 nested loop Consists of an outer loop and one or more
inner loops. Each time the outer loop is repeated, the
inner loops are reentered, and all required iterations
are performed.

 off-by-one error A common in the loop because the
loop is executed one more or one less time than it
should have been.

 sentinel value A special input value that signifies
the end of the input.

© Copyright Y. Daniel Liang, 2007

Chapter 6

 actual parameter (i.e., argument) The variables or data
to substitute formal parameters when invoking a
function.

 ambiguous invocation There are two or more possible
functions to match an invocation of a function, neither
is more specific than the other(s). Therefore, the
invocation is ambiguous.

 argument Same as actual parameter
 automatic variable local variables are also known as

automatic variables.
 bottom-up implementation Implementing and testing

methods incrementally from the bottom along the chain
of the methods.

 divide and conquer The concept of function
abstraction can be applied to the process of developing
programs. When writing a large program, you can use the
“divide and conquer” strategy to decompose it into
subproblems. The subproblems can be further decomposed
into smaller, more manageable problems.

 formal parameter (i.e., parameter) The variables
defined in the function signature.

 function A collection of statements grouped together
to perform an operation. See class function; instance
function.

 function abstraction A technique in software
development that hides detailed implementation.
Function abstraction is defined as separating the use
of a function from its implementation. The client can
use a function without knowing how it is implemented.
If you decide to change the implementation, the client
program will not be affected.

 function overloading Function overloading means that
you can define functions with the same name in a class
as long as there is enough difference in their
parameter profiles.

 function prototype Complete function declaration with
body.

 function signature The combination of the name of a
function and the list of its parameters.

 global variable A variable declared outside all
functions and are accessible to all functions in its
scope.

 header file A file with extension .h which can be
included for use by other files.

© Copyright Y. Daniel Liang, 2007

 information hiding A software engineering concept for
hiding the detail implementation of a function for the
client.

 inline function Inline functions are not called;
rather, the compiler copies the function code in line
at the point of each invocation.

 local variable A variable declared inside a function.
 parameter Variables defined in the function

signature.
 pass-by-reference (i.e., call-by-reference) A term

used when the address of the actual parameter is passed
to the function.

 pass-by-value (i.e., call-by-value) A term used when
a copy of the value of the argument is passed to the
function. For a parameter of a primitive type, the
actual value is passed; for a parameter of a reference
type, the reference for the object is passed.

 return type The type for the return value of a
function.

 return value A value returned from a function using
the return statement.

 scope of variable The portion of the program where
the variable can be accessed.

 static local variable A variable declared in a
function as static, whose value is retained for use in
the next function call.

 stepwise refinement When writing a large program, you
can use the “divide and conquer” strategy, also known
as stepwise refinement, to decompose it into
subproblems. The subproblems can be further decomposed
into smaller, more manageable problems.

 stub A simple, but not a complete version of the
function. The use of stubs enables you to test invoking
the function from a caller.

 top-down implementation Implementing and testing
methods incrementally from the top along the chain of
the methods.

© Copyright Y. Daniel Liang, 2007

Chapter 7

 array A data structure for storing a collection of
data of the same type.

 array index An integer value used to specify the
position of an element in the array. The array index is
an int value starting with 0 for the first element, 1
for the second, and so on.

 array initializer A short hand notation to create and
initialize an array.

 binary search An efficient function to search a key
in an array. Binary search first compares the key with
the element in the middle of the array and reduces the
search range by half. For binary search to work, the
array must be pre-sorted.

 const array An array whose contents cannot be
changed.

 C-string An array of characters ending with the null
terminator '\0'.

 indexed variable arrayRefVar[index] is referred to as
an indexed variable that access an element in the array
through an index.

 insertion sort An approach to sort array. Suppose that
you want to sort a list in ascending order. The
insertion-sort algorithm sorts a list of values by
repeatedly inserting a new element into a sorted
sublist until the whole list is sorted.

 linear search A function to search an element in an
array. Linear search compares the key with the element
in the array sequentially.

 null terminator The last character in a C-string.
 selection sort An approach to sort array. It finds

the largest number in the list and places it last. It
then finds the largest number remaining and places it
next to last, and so on until the list contains only a
single number.

© Copyright Y. Daniel Liang, 2007

Chapter 9
 accessor function (getter) The function for

retrieving a private field in an object.
 class An encapsulated collection of data and

functions that operate on data. A class may be
instantiated to create an object that is an instance of
the class.

 class abstraction A technique in software development
that hides detailed implementation. Class abstraction
hides the implementation of the class from the client,
if you decide to change the implementation, the client
program will not be affected.

 class encapsulation Combining of functions and data
into a single data structure.

 class’s contract Refers to the collection of functions
and fields that are accessible from outside a class,
together with the description of how these members are
expected to behave.

 client refers to the program that uses the a class.
So, it is also known as the client for the class.

 constructor A special function for initializing objects
when creating objects using the new operator. The
constructor has exactly the same name as its defining
class. Constructors can be overloaded, making it easier
to construct objects with different initial data
values.

 constructor initializer list Data fields may be
initialized in the constructor using an initializer.

 data field encapsulation To prevent direct
modifications of properties through the object
reference, you can declare the field private, using
the private modifier. Data field encapsulation makes
the class easy to maintain.

 default constructor If a class does not define any
constructors explicitly, a no-arg constructor with
empty body is assumed. This is called a default
constructor.

 directive #ifndef the directive to prevent multiple
inclusion of header files.

 dot operator (.) An operator used to access members of
an object. If the member is static, it can be accessed
through the class name using the dot operator.

 inclusion guard Use the #ifndef directive to
prevent inclusion of multiple header files.

 instance An object of a class.
 instance function A nonstatic function in a class.

© Copyright Y. Daniel Liang, 2007

Instance functions belong to instances and can only be
invoked by them.

 instance variable A nonstatic data member of a class.
An instance variable belongs to an instance of the
class.

 instantiation The process of creating an object of a
class.

 mutator function (setter) A function to set a
property in an object.

 no-arg constructor A constructor without arguments.
 object-oriented programming (OOP) An approach to

programming that involves organizing objects and their
behavior into classes of reusable components.

 Unified Modeling Language (UML) A graphical notation
for describing classes and their relationships.

 private A modifier for members of a class. A private
member can only be referenced inside the class.

 public A modifier for classes, data, and functions
that can be accessed by all programs.

 scope resolution operator (::) specifies the class
for the functions and constructors.

© Copyright Y. Daniel Liang, 2007

Chapter 10

 aggregation A special form of association that
represents an ownership relationship between two
classes.

 composition A form of relationship that represents
exclusive ownership of the class by the aggregated
class.

 has-a relationship Same as composition.
 immutable object The contents of the object cannot be

changed.
 immutable class A class is immutable if it contains

all private data fields and no mutator functions and no
accessor functions that would return a reference to a
mutable data field object.

 include guard A C++ directive to avoid duplicate
inclusion of the header files.

 instance field A data member belongs to an object.
Each object has its independent value.

 instance function A function that must be invoked
from an object.

 mutator function (setter) A function that changes the
value of a private field in an object.

 static field A data member declared using the static
modifier. A static variable is shared by all instances
of that class. Static variables are used to communicate
between different objects of the same class and to
handle global states among these objects.

 static function A function that can be invoked without
creating an instance of the class. To define static
functions, put the modifier static in the function
declaration.

 software life cycle Analysis, design, implementation,
testing, and maintenance are commonly known as the
software life cycle.

© Copyright Y. Daniel Liang, 2007

Chapter 11

 address operator The C++ operator & for obtaining the
address of a variable.

 arrow operator (->) The operator for accessing the
object through a pointer.

 constant pointer The pointer cannot be changed to
point to a new address.

 copy constructor Each class has a special
constructor, called copy constructor, which is used to
create an object initialized with another object’s
data.

 dangling pointer The pointer points to a dynamic
memory that has been freed.

 deep copy When cloning an object, all its fields are
cloned recursively.

 delete operator delete a dynamically created variable
using the delete operator.

 dereference operator The C++ operator *pointer for
accessing the value in a variable through a pointer.

 destructor Destructors are the opposite of
constructors. A constructor is invoked when an object
is created and a destructor is invoked when the object
is destroyed. Every class has a default destructor if
the destructor is not explicitly defined.

 freestore Same as heap.
 heap Memory space for storing dynamically created

variable.
 indirection operator Same as dereference operator.
 memory leak If a dynamically created variable is not

referenced, its content cannot be accessed. It is
useless, but cannot be discarded. This is called memory
leak.

 new operator The C++ operator for creating a variable
dynamically.

 shallow copy When cloning an object, all its fields
are copied. If a field is a reference type, its data
members are not copied.

 pointer-based string Same as C-string.
 this Refers to the object itself.

© Copyright Y. Daniel Liang, 2007

Chapter 12

 template class A generic class with generic types.
 template function A generic function with generic

types.
 template prefix Specifies generic types before a

class or function.
 type parameter Generic type

 stack A special type of the list where insertions

and deletions take place only at the one end, referred
to as the top of a stack.

 vector A C++ class that represents a resizable
array.

© Copyright Y. Daniel Liang, 2007

Chapter 13

 absolute file name Complete file name with drive
letter such as c:\example\Test.cpp.

 binary I/O Binary I/O interprets data as raw binary
values.

 file open mode Specify how to open the file (such as
input, output, append, or binary).

 fstream File stream class.
 ifstream Input file stream class.
 ofstream Input file stream class.
 random access file The file that can be both read and

written in any order.
 relative file name File names with drive letters.
 sequential access file The file is read or written

sequentially from beginning to end.
 stream A stream is an object that facilitates input

or output. For input, it is called an input stream. For
output, it is called an output stream.

 stream state Indicating the state of the stream such
as end, error, etc.

 text I/O Text I/O interprets data in sequences of
characters.

© Copyright Y. Daniel Liang, 2007

Chapter 14

 friend class A friend class can access private
members of a class.

 friend functions A friend function to class A can
access private members of class A.

 friend keyword The keyword to define a friend class
or friend function.

 Lvalue the item that can appear on the left-hand
side of an assignment operator.

 return-by-reference function returns a reference for
a variable (functions as an alias to a variable).

 rule of three The copy constructor, the = assignment
operator, and the destructor are called the rule of
three, or the Big Three.

© Copyright Y. Daniel Liang, 2007

Chapter 15

 abstract class When you are designing classes, a
superclass should contain common features that are
shared by subclasses. Sometimes the superclass is so
abstract that it cannot have any specific instances.
These classes are called abstract classes and are
declared using the abstract modifier. Abstract classes
are like regular classes with data and functions, but
you cannot create instances of abstract classes.

 abstract function A function signature without
implementation. Its implementation is provided by its
subclasses. An abstract function is denoted with an
abstract modifier and must be contained in an abstract
class. In a nonabstract subclass extended from an
abstract class, all abstract functions must be
implemented, even if they are not used in the subclass.

 base class A class inherited by a subclass.
 constructor chaining Constructing an instance of a

class invokes all the constructor, chaining base
classes along the inheritance chain.

 derived class A class that inherits from or extends a
base class.

 destructor chaining Destructing an instance of a
class invokes all the destructors along the inheritance
chain with the derived class’s destructor invoked
first.

 downcasting Casting an object from a superclass type
to subclass.

 dynamic binding A function may be defined in a
superclass, but is overridden in a subclass. Which
implementation of the function is used on a particular
call will be determined dynamically at runtime. This
capability is known as dynamic binding.

 generic programming Allows functions to be used
generically for a wide range of object arguments
through polymorphism.

 inheritance Declaring a new class by extending an
existing class.

 is-a relationship Same as inheritance.
 override In C++, redefining a virtual function in a

derived class is called overriding a function.
 polymorphism Refers to the feature that an object of

a subclass can be used by any code designed to work
with an object of its superclass.

 protected A modifier for members of a class. A
protected member of a class can be used in the class in

© Copyright Y. Daniel Liang, 2007

which it is declared or any subclass derived from that
class.

 pure virtual function A function declaration
without implementation. Also known as abstract
function.

 redefine Implement the function in a subclass that
is declared in a superclass.

 upcasting Casting an object from a subclass type to
superclass.

 virtual function A function declared with the keyword
virtual. In C++, redefining a virtual function in a
derived class is called overriding a function.

© Copyright Y. Daniel Liang, 2007

Chapter 16

 exception An unexpected event indicating that a
program has failed in some way. Exceptions can be
handled in a try-catch block.

 exception specification Specifies the type of
exception a function may throw.

 rethrow exception After catching an exception in a
catch clause, you may rethrow the exception.

 standard exception C++ provides several standard
exception classes such as runtime_error,
overflow_error.

 throw exception The statement to throw an exception.
 unchecked function C++ provides a function named

unexpected. This function is invoked when an exception
is thrown, but the exception is not declared in the
exception specification.

© Copyright Y. Daniel Liang, 2007

Chapter 17
 base case A simple case where recursion stops.
 infinite recursion Recursion never stops.
 recursive function A function that invokes itself

directly or indirectly.
 recursive helper function Sometimes the original

function needs to be modified to receive additional
parameters in order to be invoked recursively. A
recursive helper function can be declared for this
purpose.

 stopping condition Same as base case.

© Copyright Y. Daniel Liang, 2007

Chapter 18

 average-case analysis An average-case analysis
attempts to determine the average amount of time among
all possible input of the same size.

 best-time analysis An input that results in the
shortest execution time is called the best-case input.
The analysis to find the best-case time is known as
worst-time analysis.

 big O notation Comparing algorithms by examining
their growth rates. This notation allows you to ignore
constants and smaller terms while focusing on the
dominating terms.

 constant time The Big O notation estimates the
execution time of an algorithm in relation to the input
size. If the time is not related to the input size, the
algorithm is said to take constant time with the

notation).1(O

 exponential time An algorithm with the)(ncO time
complexity is called an exponential algorithm. As the
input size increases, the time for the exponential
algorithm grows exponentially. The exponential
algorithms are not practical for large input size.

 growth rate measures how fast the time complexity of
an algorithm grows as the input size grows.

 logarithmic time An algorithm with the)(lognO time
complexity is called a logarithmic algorithm.

 quadratic time An algorithm with the)(2nO time
complexity is called a quadratic algorithm.

 worst-time analysis An input that results in the
longest execution time is called the worst-case input.
The analysis to find the worst-case time is known as
worst-time analysis.

© Copyright Y. Daniel Liang, 2007

Chapter 19

 bubble sort The bubble sort algorithm makes several
passes through the array. On each pass, successive
neighboring pairs are compared. If a pair is in
decreasing order, its values are swapped; otherwise,
the values remain unchanged. The technique is called a
bubble sort or sinking sort because the smaller values
gradually "bubble" their way to the top and the larger
values sink to the bottom.

 bucket sort The bucket sort algorithm works as
follows. Assume the keys are in the range from 0 to N-
1. We need N buckets labeled 0, 1, ..., and N-1. If an
element’s key is i, the element is put into the bucket
i. Each bucket holds the elements with the same key
value.

 external sort sort data stored in an external file.
 heap sort Heap sort uses a binary heap to sort an

array.
 merge sort The merge sort algorithm can be described

recursively as follows: The algorithm divides the array
into two halves and applies merge sort on each half
recursively. After the two halves are sorted, merge
them.

 quick sort Quick sort, developed by C. A. R. Hoare
(1962), works as follows: The algorithm selects an
element, called the pivot, in the array. Divide the
array into two parts such that all the elements in the
first part are less than or equal to the pivot and all
the elements in the second part are greater than the
pivot. Recursively apply the quick sort algorithm to
the first part and then the second part.

 radix sort Radix sort is like bucket sort, but it is
based on radix.

© Copyright Y. Daniel Liang, 2007

Chapter 20

 circular doubly linked list A circular, doubly linked
list is doubly linked list, except that the forward
pointer of the last node points to the first node and
the backward pointer of the first pointer points to the
last node.

 circular linked list A circular, singly linked list
is like a singly linked list, except that the pointer
of the last node points back to the first node.

 deque A queue operation to remove an element from
the queue.

 doubly linked list A doubly linked list contains the
nodes with two pointers. One points to the next node
and the other points to the previous node. These two
pointers are conveniently called a forward pointer and
a backward pointer. So, a doubly linked list can be
traversed forward and backward.

 endeque A queue operation to append an element to
the queue.

 linked list In a linked list, each element is
contained in a structure, called the node. When a new
element is added to the list, a node is created to
contain the element. All the nodes are chained through
pointers.

 peek A stack operation to read the top element.
 push A stack operation to add an element to the top.
 queue Represents a waiting list, where insertions

take place at the back (also referred to as the tail
of) of a queue and deletions take place from the front
(also referred to as the head of) of a queue.

 singly linked list same as linked list.

© Copyright Y. Daniel Liang, 2007

Chapter 21

 binary search tree A binary tree with no duplicate
elements. For every node in the tree the value of any
node in its left subtree is less than the value of the
node and the value of any node in its right subtree is
greater than the value of the node.

 binary tree A data structure to support searching,
sorting, inserting, and deleting data efficiently.

 inorder traversal Visit the left subtree of the
current node first, then the current node itself, and
finally the right subtree of the current node.

 postorder traversal Visit the left subtree of the
current node first, then the right subtree of the
current node, and finally the current node itself.

 preorder traversal Visit the current node first, then
the left subtree of the current node, and finally the
right subtree of the current node.

 priority queue In a priority queue, elements are
assigned with priorities. The element with the highest
priority is accessed or removed first.

 tree traversal A process of visiting each node in
the tree exactly once.

© Copyright Y. Daniel Liang, 2007

Chapter 22

 associative container Associative containers are
non-linear containers that can locate elements stored
in the container quickly. Such containers can store
sets of values or key/value pairs. The four associative
containers are set, multiset, map, and multimap.

 bidirectional iterator A bidirectional iterator is
a forward iterator with the capability of moving
backward. The iterator can be moved freely back or
forth one at a time.

 container Classes in the STL are container classes.
A container object such as a vector is used to store a
collection of data, often referred to as elements.

 container adapter Container adapters are
constrained versions of sequence containers. They are
adapted from sequence containers for handling special
cases. The three container adapters are stack, queue,
and priority_queue.

 deque The term deque stands for double-ended queue.
A deque provides efficient operations to support
insertion and deletion on both ends of a deque.

 first-class container Sequence containers and
associative containers are known as the first-class
container.

 forward iterator A forward iterator combines all
the functionalities of input and output iterators to
support both read and write operations.

 input iterator An input iterator is used for
reading an element from a container. It can move only
in a forward direction one element at a time.

 istream_iterator Used for reading an element from
the console.

 iterator Similar to a pointer, used extensively in
the first-class containers for accessing and
manipulating the elements.

 list The class list is implemented as a doubly-
linked list. It supports efficient insertion and
deletion operations anywhere on the list.

 map Each element in a map is a pair. The first
value in the pair is the key and the second value is
associated with the key. A map provides quick access to
value using the key.

 multiset Stores elements (may contain duplicates).
 multimap Same as map, except that a multimap allows

duplicate keys, but a map does

© Copyright Y. Daniel Liang, 2007

 ostream_iterator Used for outputting an element to
the console.

 output iterator An output iterator is used for
writing an element to a container.

 priority queue A STL class. In a priority queue,
elements are assigned with priorities. The element with
the highest priority is accessed or removed first. A
priority queue has a largest-in, first-out behavior.

 random-access iterator A random access iterator is
a bidirectional iterator with the capability of
accessing any element in any order, i.e., to jump
forward or backward by a number of elements.

 queue A STL container. A queue is a first-in/first-
out container.

 sequence container The sequence containers (also
known as sequential containers) represent linear data
structures. The three sequence containers are vector,
list, and deque (pronounced deck).

 set An STL associative containter. Stores
nonduplicate elements.

 STL algorithm Algorithms are used in the functions
to manipulate data such as sorting, searching, and
comparing elements.

 vector An STL sequence container for storing elements.
The vector class is implemented using array. It is
efficient to appending and searching operations.

© Copyright Y. Daniel Liang, 2007

Chapter 24

 adjacency list To represent edges using adjacency
lists, define an array of linked lists. The array has n
entries. Each entry represents a vertex. The linked
list for vertex i contains all the vertices j such that
there is an edge from vertex i to vertex j.

 adjacent vertices Two vertices in a graph are said to
be adjacent if they are connected by the same edge.

 adjacency matrix representing edges using a matrix.
 breadth-first search first visits a vertex, then all

its adjacent vertices, then all the vertices adjacent
to those vertices, and so on. To ensure that each
vertex is visited only once, skip a vertex if it has
already been visited.

 complete graph A complete graph is the one in which
every two pairs of vertices are connected.

 degree The degree of a vertex is the number of edges
incident to it.

 depth-first search first visits the root, then
recursively visits the subtrees of the root.

 directed graph In a directed graph, each edge has a
direction, which indicates that you can move from one
vertex to the other through the edge.

 graph A graph is a mathematical structure that
represents relationships among entities in the real
world.

 incident edges An edge in a graph that joins two
vertices is said to be incident to both vertices.

 parallel edge A loop is an edge that links a vertex
to itself. If two vertices are connected by two or more
edges, these edges are called parallel edges.

 Seven Bridges of Königsberg The first known problem
solved using graph theory.

 simple graph A simple graph is one that has no loops
and parallel edges.

 spanning tree Assume that the graph is connected and
undirected. A spanning tree of a graph is a subgraph
that is a tree and connects all vertices in the graph.

 weighted graph edges or vertices are assigned with
weights.

 undirected graph no directed edges.
 unweighted graph edges are vertices are not assigned

with weights.

Chapter 25

© Copyright Y. Daniel Liang, 2007

 Dijkstra’s algorithm A well-known algorithm for
finding the shortest path from a single source to all
other vertices in a weighted graph.

 edge-weighted graph edges are assigned with weights.
 minimum spanning tree A spanning tree with the

minimum total weights.
 Prim’s algorithm A well-known algorithm for finding a

spanning tree in a connected weighted graph.
 complete graph A complete graph is the one in which

every two pairs of vertices are connected.
 shortest path a path between tow vertices with the

shortest total weight.
 single-source shortest path a shortest path from a

source to all other vertices.
 vertex-weighted graph Weights assigned to vertices.

