

8

Supplement IV.F: Immutable Objects and Classes

For Introduction to C++ Programming
By Y. Daniel Liang

If the contents of an object cannot be changed (except
through memberwise copy) once the object is created, the
object is called an immutable object and its class is called
an immutable class. If you delete the set function in the
Circle class in Listing 9.8, Circle2.h in the text, the
class would be immutable because radius is private and
cannot be changed without a set function.

A class with all private data fields and no mutators is not
necessarily immutable. To demonstrate this, let us define
two classes: Person and Date. Figures 1 and 2 give the UML
class diagrams of these two classes.

Person

-id: int

-birthDate: Date*

+Person(id: int, year: int,
month: int, day: int)

+getId(): int

+getBirthDate(): Date*

The id of this person.

The birth date of this person.

Constructs a Person with the specified id, year, month,
and day.

Returns the id of this person.

Returns the birth date of this person.

Figure 1
The Person class encapsulates the id and birth date of
a person.

Date

-year: int

-month: int

-day: int

+Date(newYear: int, newMonth:
int, newDay: int)

+getYear(): int

+setYear(newYear: int): void

The year of this date.

The month of this date.

The day of this date.

Constructs a Date with the specified year, month, and
day.

Returns the year of this date.

Sets a new year for this date.

\

Figure 2
The Date class encapsulates the year, month, and day.

The Person class declaration and implementation are shown in
Listings 1 and 2. The Date class declaration and
implementation are shown in Listings 3 and 4.

Listing 1 Person.h

9

#include "Date.h"

class Person
{
public:
 Person(int id, int year, int month, int day);
 int getId();
 Date* getBirthDate(); // Return the pointer of the object

private:
 int id;
 Date* birthDate; // The pointer of the object
};

Listing 2 Person.cpp

#include "Person.h"

Person::Person(int id, int year, int month, int day)
{
 this->id = id;
 birthDate = new Date(year, month, day);
}

int Person::getId()
{
 return id;
}

Date* Person::getBirthDate()
{
 return birthDate; // Return the pointer of the object
}

Listing 3 Date.h

class Date
{
public:
 Date(int newYear, int newMonth, int newDay);
 int getYear();
 void setYear(int newYear);

private:
 int year;
 int month;
 int day;
};

10

Listing 4 Date.cpp

#include "Date.h"

Date::Date(int newYear, int newMonth, int newDay)
{
 year = newYear;
 month = newMonth;
 day = newDay;
}

int Date::getYear()
{
 return year;
}

void Date::setYear(int newYear)
{
 year = newYear;
}

The Person class has all private data fields and no
mutators, but it is mutable. As shown in the client program
in Listing 5, the data field birthDate is returned using the
getBirthDate() function. This is a pointer to a Date object.
Through this pointer, the year of the birth date is changed,
which effectively changes the contents of the Person object.

Listing 5 TestPerson.cpp

#include <iostream>
#include "Person.h"
using namespace std;

int main()
{
 Person person(111223333, 1970, 5, 3);
 cout << "birth year before the change is " <<
 person.getBirthDate()->getYear() << endl;
 Date *pDate = person.getBirthDate();
 pDate->setYear(2010);
 cout << "birth year after the change is " <<
 person.getBirthDate()->getYear() << endl;
 return 0;
}

Sample output
birth year before the change is 1970
birth year after the change is 2010

11

For a class to be immutable, it must mark all data fields
private and provide no mutator functions and no accessor
functions that would return a reference or a pointer to a
mutable data field object.

